
Human-AI Collaboration with Misaligned Preferences
Jiaxin Song

University of Illinois Urbana-Champaign
Urbana, IL, USA

jiaxins8@illinois.edu

Parnian Shahkar
University of California, Irvine

Irvine, CA, USA
shakarp@uci.edu

Kate Donahue
Massachusetts Institute of Technology

Cambridge, MA, USA
University of Illinois Urbana-Champaign

Urbana, IL, USA
kpd@illinois.edu

Bhaskar Ray Chaudhury
University of Illinois Urbana-Champaign

Urbana, IL, USA
braycha@illinois.edu

ABSTRACT
In many real-life settings, algorithms play the role of assistants,
while humans ultimatelymake the final decision. Often, algorithms
specifically act as curators, narrowing down a wide range of op-
tions into a smaller subset that the human picks between: consider
content recommendation or chatbot responses to questions with
multiple valid answers. Crucially, humansmay not know their own
preferences perfectly either, but instead may only have access to a
noisy sampling over preferences. Algorithms can assist humans by
curating a smaller subset of items, but must also face the challenge
ofmisalignment: humansmay have different preferences from each
other (and from the algorithm), and the algorithm may not know
the exact preferences of the human they are facing at any point in
time. In this paper, we model and theoretically study such a setting.
Specifically, we show instances where humans benefit by collabo-
rating with a misaligned algorithm. Surprisingly, we show that hu-
mans gain more utility from a misaligned algorithm (which makes
different mistakes) than from an aligned algorithm. Next, we build
on this result by studying what properties of algorithms maximize
human welfare when the goals could be either utilitarian welfare
or ensuring all humans benefit. We conclude by discussing impli-
cations for designers of algorithmic tools and policymakers.
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1 INTRODUCTION
In recent years, advances in artificial intelligence andmachine learn-
ing have become increasingly integrated into our daily lives: algo-
rithms help suggest movies for us to watch, routes for us to drive
on, or even generate novel content for us to rely on. However,
outputs of algorithmic tools in this context almost never have the
“final say”: for example, while an algorithm can suggest multiple
movies, the human makes the final decision on which movie she
ultimately wants to watch. As a result, we often care about study-
ing the performance of the human-algorithm system, rather than
the performance of the algorithm in isolation. Human-algorithm
systems have been studied extensively in more applied contexts,
and in recent years, a more formal theoretical study of human-
algorithm systems has grown (see Section 3 for more discussion).

In this paper, we focus on a specific instance of human-algorithm
collaboration: where the algorithm acts as a curator, and the hu-
mans are noisy and potentially misaligned with each other and
with the algorithm. Informally, an algorithm acts as a curator when
its role is to narrow down a larger set of items to a smaller set,
among which the human picks her favorite. This type of role is
one of the most common in human-algorithm systems: e.g., in con-
tent recommendation, search, and some types of categorical pre-
diction1. A human is noisy if she has inherent randomness in her
ability to recognize her true preferences over items. “To err is hu-
man”, and it has been widely recognized that humans are often
imperfect at picking the “correct” item (e.g., see [4, 44, 52, 59]). A
human is misaligned with another agent (human or algorithm) if
they have different ground-truth preferences over items, which is
distinct from their potentially noisy realizations of those prefer-
ences. For example, if Alice prefers horror movies and Bob prefers
comedies, then their ground truth preferences over a set of movies
would be misaligned with each other. Additionally, given a single
algorithmic recommender, either Alice or Bob (or both) would be
misaligned with the algorithm. Of course, in the limiting case of
perfect personalization, both could have separate algorithms that
are perfectly alignedwith their preferences, but in realistic settings
where one algorithm must serve a diverse range of humans, mis-
alignment is a reality of life. Note that our framework has strong
connections to other bodies of work, such as pluralistic alignment

1For example, when a user requests directions, Google maps returns a small set of
routes, and the user typically picks her final route from those routes (Figure 1).
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Figure 1: Human-AI collaboration betweenGoogleMaps (Al-
gorithm) and Alice (Human). Here, we assume that the algo-
rithm is deterministic, but the human is noisy and only the
best item (𝑥1) has value. If Alice picked by herself, she would
pick 𝑥1 90% of the time, but when the algorithm determinis-
tically reduces her set to {𝑥1, 𝑥3}, she picks 𝑥1 always.

and conformal prediction: we discuss such connections in Section
3.

One of the key points of our paper is that there are settings
where misalignment can be helpful. As a stylized example, con-
sider Figure 1, which illustrates a collaboration between Google
Maps (algorithm) and Alice (human). Google Maps recommends
𝑘 = 2 routes {𝑥1, 𝑥3} to Alice from three routes {𝑥1, 𝑥2, 𝑥3}. The
true preference of Alice is (𝑥1, 𝑥2, 𝑥3), but she cannot always iden-
tify her preference exactly (potentially because she only has access
to imperfect information about the outcomes) and has a probabil-
ity of 0.1 of wrongly ranking them as (𝑥2, 𝑥1, 𝑥3). As a result, she
has a probability of 0.9 to choose her favorite route 𝑥1 when mak-
ing the decision alone. However, when following the suggestions
of Google Maps, she is always able to rank 𝑥1 before 𝑥3 and choose
the best route for her. The high-level goal of our paper is to study
when settings like those in Figure 1 occur and when a human ben-
efits from relying on a potentially misaligned algorithm.

Our contributions. In this work, we begin by formally defining
our model in Section 2: this includes a description of how the hu-
man and algorithm interact, as well as the types of noise models
that the human and/or algorithm exhibit, and gives a formal defi-
nition of misalignment. Additionally, we define several key objec-
tives for the human-algorithm system to satisfy. For example, one
objective is maximizing social welfare: if we assume each person
has some utility for each item, expected (utilitarian) social welfare
gives the total expected utility of all humans using the same algo-
rithmic curation tool. Other objectives relate to the comparative
performance of the human-algorithm system and the human by
herself: does adding the algorithm increase the human’s expected
welfare, or decrease it? We say that a system achieves uplift if it
increases the utility of every human, relative to what they would
have achieved by themselves.Throughout the rest of this work, our
goal will be to study when each of these objectives can be satisfied.
We assume that an algorithm can be modified by either changing
its ground-truth ordering over items (i.e., changing the training ob-
jective), or changing the noise level of the algorithm (i.e., changing
the temperature in a stochastic model).

Our first problem focuses on when misalignment is helpful for
an individual human:

Problem 1 (Comparative Benefits of Misalignment). Given a fixed
noisy human, which algorithm leads to the greatest utility for the
human?

In Section 4, we begin by studying a fixed human who is consid-
ering a range of algorithmic tools that are all misaligned to varying
degrees with the human. First, we note that it is possible for a hu-
man to benefit when using a misaligned algorithm: this should be
intuitive to anyone who has successfully gained value out of an
algorithmic tool that is imperfectly calibrated to their own prefer-
ences. Next, this section provides a comparative analysis of which
type of algorithm assists the human more or less. Specifically, we
show that increased alignment with the algorithm does not guaran-
tee increased performance, and formally describe when misalign-
ment may be helpful for utility. To give intuition, misalignment
leads to “different kinds of mistakes” which can sometimes be help-
ful, if the mistakes are not too costly and if it makes it easier for
the human to correctly identify their preferred items.

Next, Section 5 builds on this framework to answer the question,
“How shouldwe design an algorithm system to benefit a population
of human users”?

Problem 2. Can we find a ground-truth ranking and accuracy pa-
rameter such that the joint system maximizes utilitarian social wel-
fare? Can we find settings such that we achieve uplift, or is such a
setting impossible?

Our main contributions can be summarized (informally) as fol-
lows,

• An algorithm thatmaximizes utilitarianwelfare is always noise-
less. While it is in general computationally hard to find this al-
gorithm, we can design a mixed integer program (MIP) which
is similar to the MIP used for assortment optimization under
the Mallows model [32].
• However, we show cases where uplift can only be achieved by

a noisy algorithm, aligning with the broader literature on the
importance of randomization for fairness goals and providing
motivation for the default non-zero temperature settings that
many generative tools use.
• We provide efficient algorithms to validate whether a given

algorithm achieves uplift, and identify natural sufficient condi-
tions for when we can design algorithms that always achieve
uplift.

While most of our contributions are theoretical, in each section
we explore generalizations of our results through numerical sim-
ulations, showing that our main contributions generalize substan-
tially beyond our formal model. Finally, in Section 7 and Section 8,
we conclude by summarizing our main contributions, discussing
extensions, and highlighting impacts for policymakers, platform
designers, and applied researchers. At a high level, we view our
work as highlighting an important tension between the desider-
ata of creating algorithms that think like us and provide additional
value over what humans could do by themselves.

2 MODEL
In a human-algorithm collaboration model, there are two actors:
an algorithm (𝐴) and a human (𝐻 ). There is a set of items 𝑀 =
{𝑥1, . . . , 𝑥𝑚} representing different outcomes (e.g., labels in predic-
tion tasks, generative model output). The setting we study is that
of where the algorithm acts as a curator, picking a subset of size
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𝑘 from a larger set of items of size 𝑚. The specific mode of inter-
action we assume is where the algorithm picks their top 𝑘 from
some noisy ranking over items, and the human picks their favorite
among that set, according to their own noisy ranking over items2
This setting may occur in settings such as content recommenda-
tion (e.g., Netflix or Spotify) or algorithmic assistants in predictive
tasks.

These items can have different values to the actors. One notable
special setting is called top item recovery, where only a single
item has positive value. For example, these settings where the goal
of the human is to recover the single best item, such as a job can-
didate who is most suitable, or the “best” route between two loca-
tions.

We say the algorithm and the human are aligned if they agree
on the values of each item. However, as two actors may get infor-
mation from different sources, perfect alignment cannot always
be achieved. We consider misalignment within the actors through
the following two aspects: either between the algorithm and the
human, or between different humans. Formally, the humans come
from a population of 𝑛 types, where the 𝑖th type has probability
𝑝𝑖 to occur. If human and algorithm are misaligned, but their top
items are the same, we say they are top-aligned; otherwise, they
are top-misaligned. We assume that human has descending values
according to their ground-truth rankings. Let 𝑣𝑖, 𝑗 denote the value
of the 𝑗-th best item for a human of type 𝑖 . For each human of type
𝑖 ∈ [𝑛], let her utility function be 𝑢𝑖 , where 𝑢𝑖 (𝑥) = 𝑣𝑖, 𝑗 if item 𝑥

is the 𝑗-th item in her ground-truth ranking 𝜌∗𝑖 . We denote by 𝑥𝑖𝐻
the item chosen by the human of type 𝑖 when acting alone, by 𝑥𝐴
the item chosen by the algorithmwhen acting alone, and by 𝑥𝑖𝐶 the
item chosen by the human of type 𝑖 under collaboration.

We assume that each agent can only access a noisy permuta-
tion over items: this may be because the agent only has access
to imperfect or noisy data about each alternative, for example, or
due to features such as temperature in generative AI tools [2]. De-
note the sampled rankings of the algorithm and human as 𝜋 ∼ D𝑎

and 𝜌𝑖 ∼ D𝑖
ℎ
respectively, whereD𝑎 concentrates at ground-truth

ranking 𝜋∗ andD𝑖
ℎ
concentrates at 𝜌∗𝑖 . Denote by 𝑥𝑖 ≻𝜋 𝑥 𝑗 that 𝑥𝑖

precedes 𝑥 𝑗 in 𝜋 . Denote by 𝜋 (𝑖) and 𝜋 [: 𝑘] the 𝑖-th item and the
first 𝑘 items (viewed as an unordered set) in a ranking 𝜋 . All dis-
tributions in the paper are inversion-monotonic and label-invariant.
Informally, adding inversion to a ranking only decreases its prob-
ability, and the distribution is not tied to the labels of the items.
We defer a more formal definition to Appendix A. Both Mallows
model [55] (see Appendix A.1) and Plackett-Luce model [52, 59]
(see Appendix A.2) satisfy the two properties.

We are interested in how an algorithm performs over a popu-
lation of people who are all using the algorithm simultaneously,
that is, welfare objectives over different humans who may receive
different utility from the same algorithm. There are two main wel-
fare objectives we will consider: utilitarian social welfare and up-
lift. Utilitarian social welfare is equal to the sum of the human’s
expected utilities (i.e., E[𝑢𝑖 (𝑥𝑖𝐶 )]) weighted by the probabilities of
every type of human (i.e., 𝑝𝑖 ). Formally,

2Note that this is the same modeling assumption as [34] in the unanchored case, but
our results significantly generalize over their results by allowing agents to be mis-
aligned.

Definition 1 (Expected utilitarian social welfare). The utilitarian
social welfare of a joint system is the sum of expected utility of the
𝑛 types of humans

∑𝑛
𝑖=1 𝑝𝑖 · E[𝑢𝑖 (𝑥𝑖𝐶 )].

Further, we are interested in whether the human-AI collabora-
tion can lead to improvements in human utility, compared to the
utility the human would experience if she solved the task herself.
If an algorithm can simultaneously benefit a population of people
in this way, we say that the algorithm achieves uplift.

Definition 2 (Uplift). A human-algorithm joint system achieves
uplift if the expected utility of every type of human is improved:
E[𝑢𝑖 (𝑥𝑖𝐶 )] > E[𝑢𝑖 (𝑥𝑖𝐻 )] for any 𝑖 ∈ [𝑛]

3.

3 RELATEDWORK
Human-algorithm collaboration. Ourwork relates to the general

area of human-algorithm collaboration. In particular, there is a rich
history of applied and empirical work in human-algorithm interac-
tion: we refer interested readers to see [49, 50, 53, 60] for textbook
treatments. Specifically, our work relates to a growing literature
using theoretical models to analyze humans interacting with algo-
rithms. Some works study how to design algorithms to optimally
assist humans [12, 18, 21, 33, 54]. Other work decides when human-
algorithm teams perform well [5, 6, 19, 28, 41, 42, 58, 69], often
relating to benchmarks such as complementarity (strict improve-
ment over the human or algorithm alone defined in [13]). Some
relevant literature reviews, taxonomies, and systematic studies in
this space include [40, 63, 73].

Within human-algorithm collaboration, ourwork ismost closely
related to that of Donahue et al. [34], which studies a similar set-
ting where an algorithmic tool presents a top 𝑘 subset to a noisy
human. A key difference in our work is that we allow humans to
be misaligned with the algorithm and study when misalignment
is helpful. In fact, many of our contributions strictly generalize
theirs, such as generalizing the utility function beyond top item
recovery. Other related areas include conformal prediction, which
studies how to optimize a subset of items (e.g., ensuring that the
best item is presented with high probability): see [8, 38] for a sum-
mary of work in this area. Within this space, some works focus on
optimizing the set of items that are presented [11, 31, 31, 70, 71, 75],
while others include more empirical analyses of specific settings
[7, 9]. In general, these works do not consider settings with multi-
ple humanswhomay bemisalignedwith each other: one exception
is [27], which studies an empirical setting on when algorithmic
alignment is a helpful property for tools assisting human decision-
makers. There is also a line of work studying the setting where the
AI works as a curator, e.g., for example, by presenting a narrowed
set of features to the human expert [14, 26, 27, 31, 70, 71, 75]. The
role of the human differs in our work: the human picks their fa-
vorite item among the curated items in our setting, whereas in their
system, the human makes the prediction according to all the pre-
sented features, so the prediction quality depends on the AI’s con-
fidence. [14, 26, 27] showed that if the confidence value aligns with
the human’s confidence, the collaboration will benefit the human’s
decision-making.There are also works considering the human and

3We refer the reader to the related work section for discussion about the relation
between uplift and complementarity [13]
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the algorithm holding different information [23, 24]. [24] gener-
alizes Aumann’s Agreement Theorem by introducing calibration-
based conditions and ensuring efficient convergence of the con-
versation between the two parties. Building on this, [23] then pro-
poses more communication-efficient protocols and relaxes the as-
sumption. Compared to their work, our work mostly considers the
one-shot collaboration between the two parties and shows that
sometimes misalignment can be helpful for decision-making.

Pluralistic alignment. Another research area that our paper re-
lates to is pluralistic alignment. In this setting, the goal is generally
to align an algorithm tool with users who have heterogenous pref-
erences (e.g. [68]), especially the work connected with voting and
social choice literature on aggregating diverse user preferences
(e.g. [1, 22, 25, 30, 39, 57, 65, 67]). One key difference betweenmuch
of this work and our own is the meaning of noise. Often, work in
this space (and voting in general) assumes that users know their
own preferences and can represent them faithfully, which in the
case of political opinions is often a fairly reasonable assumption. In
our setting, we are assuming that humans may be able to only nois-
ily access their true values over items and thus can benefit from
the assistance of another agent (e.g., an algorithm). This is a more
natural assumption in lower-stakes settings such as content recom-
mendation or many types of content creation, such as writing code
or daily emails. Separately, some papers study the performance of
voting rules under noise (e.g., sporting competition), though they
tend to be less focused on societal welfare objectives [15, 20].

Complementarity and Uplift. The concept of uplift is closely re-
lated to that of complementarity as defined in [13], where “a human–
AI system achieves complementary performance if it outperforms
both the AI and the human acting alone.” Compared to complemen-
tarity, uplift is a weaker notion: it only requires that the human–AI
system outperform the human alone. However, uplift also differs
in an important respect: it is a population-level property. That is,
an algorithm achieves uplift only if it benefits all humans who use
it.

Moreover, the practical contexts in which complementarity and
uplift apply are fundamentally different. The classical complemen-
tarity setting assumes that both the human and the algorithm aim
to predict an objective outcome. In contrast, under uplift, the algo-
rithm serves as a curator that assists the human in better identi-
fying her preferences under uncertainty. Consequently, the algo-
rithm’s performance is defined by how effectively it helps the hu-
man, rather than by its predictive accuracy in isolation; therefore,
its standalone performance is not well-defined in this setting.

Other ranking/permutationmodels. Thebasic rankingmodel con-
sidered in our paper is defined over the number of inversions. A
wide range of alternative permutation models has been studied in
the literature. For example, the Bradley-Terry model [17] views
a permutation as the consequence of a sequence of choices; the
weighted Mallows model [62] assigns weights to the inversions
and defines the probability of a permutation by weighted Kendall-
Tau distance. Moreover, [10, 51] studied learning a mixture of the
Mallows model, which assumes the sampled permutation comes
from a heterogeneous population.

Wisdom of the crowd. Our work is related to the literature on
the “wisdom of the crowd,” where aggregating multiple individual
opinions can yield more accurate judgments than relying on a sin-
gle agent. However, our setting differs in several key respects. First,
the roles of the human and the algorithm are distinct: the algorithm
acts as a curator, while the human retains the final decision, unlike
traditional crowd settingswhere participants independently report
beliefs and a mechanism determines the outcome. Second, the col-
laboration goal differs: we aim to assist the human inmaking better
decisions, whereas wisdom-of-the-crowd studies focus on mech-
anisms for more accurate aggregate outcomes (e.g., surprisingly
popular [45, 61]). Finally, prior work (e.g., [36, 37, 43, 45, 61, 64])
assumes a large population where the crowd’s majority opinion is
informative [45]. In contrast, we study fine-grained collaboration
between just two agents—the human and the algorithm—showing
that effective information aggregation can still arise even when
their underlying rankings differ.

4 SINGLE HUMANWITH AI ASSISTANT:
BENEFITS TO MISALIGNMENT

In this section, we begin by analyzing a single human who is con-
sidering multiple different algorithmic assistants. These algorith-
mic assistants differ from each other in their relative ground-truth
orderings over items - e.g., some of them may be misaligned with
the human’s ordering over items. At first glance, we may expect
the human’s utility to decrease with increased misalignment with
the algorithm. However, as mentioned by the previous example in
Figure 1, misalignment sometimes better assists a human in mak-
ing the decision. The goal of this section is to describe what those
conditions are.

Without loss of generality, we relabel items by the human’s
ranking: 𝜌∗ = (𝑥1, . . . , 𝑥𝑚). Meanwhile, we omit the index 𝑖 for
the human type and denote the human’s value for the 𝑗-th item by
𝑣 𝑗 . All the proofs in this section can be found at [35, Appendix D].

4.1 Top-item Recovery and Related Setting
As awarm-up, we first show a fine-grained analysis of the potential
effect on the human’s decision-making after swapping two specific
items in the algorithm’s ground-truth ranking.

Let 𝑥𝑖 , 𝑥 𝑗 be two items with 𝑖 < 𝑗 , indicating that item 𝑥𝑖 is
(weakly) better than item 𝑥 𝑗 to the human. Denote algorithms 𝐴1
and 𝐴2 that are identical except that 𝐴1 places 𝑥𝑖 before 𝑥 𝑗 and
𝐴2 inverts a pair of items 𝑥𝑖 and 𝑥 𝑗 in their ground-truth rankings.
We abuse the notations 𝑥1𝐶 and 𝑥2𝐶 for the items that the human
picks when collaborating with 𝐴1 (the aligned one) and 𝐴2 (the
misaligned one), respectively. We observed that,

Lemma 1. For any item that is not 𝑖 , the probability of picking that
item is higher with the misaligned algorithm (and the probability
of picking item 𝑖 is lower). That is, for any 𝑟 ∈ [𝑚] with 𝑟 ≠ 𝑖 ,
P[𝑥1𝐶 = 𝑥𝑟 ] ≤ P[𝑥2𝐶 = 𝑥𝑟 ], and P[𝑥1𝐶 = 𝑥𝑖 ] ≥ P[𝑥2𝐶 = 𝑥𝑖 ]4.

Proof sketch. We highlight the ideas here, and the full proof can
be found at [35, Appendix D]. Since the misaligned algorithm 𝐴2

4Note that the two inequalities become tight only when the two items are completely
indistinguishable to the human, i.e., swapping them does not change the probability
of any ranking under the human’s distribution. The following content considers the
case where this condition does not hold.
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places 𝑥𝑖 lower than 𝑥 𝑗 in the ground-truth ranking compared to
𝐴1, it is more likely to present 𝑥𝑟 , 𝑥 𝑗 rather than 𝑥𝑟 , 𝑥𝑖 to the human.
As 𝑥 𝑗 is relatively worse than 𝑥𝑖 in the human’s preference, the
human is thus more likely to choose 𝑥𝑟 when presented with 𝑥𝑟 , 𝑥 𝑗 .

The itemwise probability comparison then implies Theorem 1
below, which distinguishes between misalignment on items that
are valueless to the human and misalignment with items that are
maximally valuable to the human, showing that the former are al-
ways helpful and the latter are always harmful.

Theorem 1. The human gains higher utility with the misaligned
algorithm when 𝑥𝑖 and 𝑥 𝑗 are least valued, but lower utility when 𝑥𝑖
is top valued.

We illustrate Theorem 1 in Example 1 below.

Example 1. Consider the setting with three items, where the hu-
man’s ground-truth ranking is 𝜌∗ = (𝑥1, 𝑥2, 𝑥3), and there are four
potential algorithms (Figure 2). Suppose items 𝑥2 and 𝑥3 have equal
value to the human. By repeated applications of Theorem 1, we can
derive relationships between the value of each of these algorithms to
the human: for example, Algorithm 2 is better than Algorithm 1 be-
cause it is created by an inversion in value-less items (𝑥2, 𝑥3), and
Algorithm 3 is better than Algorithm 4 by identical reasoning. Sim-
ilarly, Algorithm 1 is better than Algorithm 4 because Algorithm 4
involves an inversion with the most valuable item (and Algorithm 2
is better than Algorithm 3 by identical reasoning).

𝜌∗

1 2 3

𝐴1 1 2 3 𝐴2< 1 3 2

∨
𝐴4 3 2 1 < 𝐴3

∨
3 1 2

Figure 2: Illustration of Theorem 1 with 3 items, where the
rounded nodewith number 𝑖 represents item 𝑥𝑖 and themost
valuable item is in blue.

As a corollary of Theorem 1, Theorem 2 characterizes the best
and the worst algorithm assistants for the top item recovery set-
ting (where each human only has value for recovering her favorite
item).

Theorem 2 (Best/worst strategy for top item recovery). In the top
item recovery setting, the algorithm’s ground-truth ranking 𝜋∗ that
maximizes human’s expected utility is 𝜋∗ = (𝑥1, 𝑥𝑚, . . . , 𝑥2) while
the oneminimizing human’s expected utility is 𝜋∗ = (𝑥2, . . . , 𝑥𝑚, 𝑥1).

These results imply that Theorem 1 gives a partial order over
which type of algorithms a given humanwould prefer. One natural
questionwould bewhether a total order over algorithms is possible.
The following example illustrates why this is not always possible.

Example 2. Consider the human working with two algorithm as-
sistants 𝐴1 and 𝐴2, of which the ground-truth rankings are respec-
tively (𝑥1, . . . , 𝑥10) and (𝑥1, . . . , 𝑥5, 𝑥10, . . . , 𝑥6). Note that the design
of 𝐴2 follows the insight of theorem 1 - aligning with the human on
the high-valued items, while reversing the low-valued items. Figure 3
plots the relative performance between the two algorithmic assistants
(𝐴1 and𝐴2) and the human working alone (𝐻 ), where all of them fol-
low the Mallows distribution, and the x-axis/y-axis are respectively
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Figure 3: Comparison between human working with 𝐴1, 𝐴2,
or alone, where 𝐴1 & 𝐴2 > 𝐻 denotes that the human per-
forms better when assisted by either algorithm.

the accuracy of the human and the algorithm. We assume that the
two algorithmic assistants have the same accuracy. It can be noticed
that the relative performance between 𝐴1 and 𝐴2 is not fixed and
depends on the accuracy level.

4.2 Extensions to Specific Distributions
Another question is how Theorem 1 generalizes to settings where
the inverted items 𝑥𝑖 and 𝑥 𝑗 may not necessarily be the most or
least valuable items to the human. This section investigates this
question under two specific models: the Plackett-Luce model and
theMallowsmodel by quantifying the probability changes in Lemma 1.
For clarity of presentation, we defer the theorem statements of the
Plackett-Luce model to Appendix B.

We extendTheorem 1 both theoretically and numerically: (i)We
establish more general conditions under which misalignment is
guaranteed to be either beneficial or harmful under the Mallows
and Plackett–Luce models. These theoretical extensions provide a
characterization of when swapping 𝑥𝑖 and 𝑥 𝑗 is beneficial or not.
We summarize the insights in Table 1. (ii) We present a numerical
study in Section 9.1, examining scenarios where both the human
and the algorithm follow either a Mallows model or a Random Util-
ity Model (RUM). Our results indicate that the conclusions of The-
orem 1 continue to hold even when 𝑥𝑖 and 𝑥 𝑗 take relatively small
values.

Let 𝜋1 and 𝜋2 respectively be the rankings output by 𝐴1 and
𝐴2. The following lemma first provides a sufficient condition when
misalignment is harmful to the human.

Lemma 2. Collaboration with a misaligned algorithm is harmful
for the human under the Mallows model with accuracy parameter 𝜙ℎ
if 𝑣1 − 𝑣𝑖 ≤ exp(−𝜙ℎΔ)

1−exp(−𝜙ℎΔ) Δ where Δ = 𝑗 − 𝑖 and 𝑘 = 2.

We now provide further intuition on when the above conditions
hold. The condition is more likely to hold when the value of the
most valuable item, 𝑣1, does not significantly exceed the value of
𝑥𝑖 , 𝑣𝑖 , or 𝜙ℎ is sufficiently small. The former condition means that
𝑥𝑖 is nearly the top item, while the latter one indicates the human
is highly noisy. Under these conditions, collaboration with the mis-
aligned algorithm tends to only hurt the human.

It is worth noting that Lemma 2 does not provide a necessary
condition: when Δ is large, the right-hand side tends to zero, and
the condition is hard to satisfy. However, the human may still be
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𝑥𝑖 (top), 𝑥 𝑗 (< top) 𝑥𝑖 , 𝑥 𝑗 (nearly top) 𝑗 − 𝑖 > Δ, 𝑥𝑖 , 𝑥 𝑗 (< top) 𝑥𝑖 , 𝑥 𝑗 (bottom)
Highly accurate human 𝐴1 > 𝐴2 (theorem 1) 𝐴1 > 𝐴2 (lemma 2) 𝐴2 > 𝐴1 (lemma 3) 𝐴2 > 𝐴1 (theorem 1)

Accurate human 𝐴1 > 𝐴2 (theorem 1) 𝐴1 > 𝐴2 (lemma 2) 𝐴2 > 𝐴1 (lemma 3) 𝐴2 > 𝐴1 (theorem 1)
Highly noisy human 𝐴1 > 𝐴2 (theorem 1) 𝐴1 > 𝐴2 (lemma 2) 𝐴1 > 𝐴2 (lemma 2) 𝐴2 > 𝐴1 (theorem 1)

Table 1: Summary of the insights by Theorem 1 and its extensions. Note that 𝐴1 is aligned and 𝐴2 is misaligned, creased by
swapping items 𝑥𝑖 , 𝑥 𝑗 . 𝑥𝑖 (top or bottom) indicates that 𝑥𝑖 is the most (or least) valuable item to the human. 𝑗 − 𝑖 > Δ indicates
that there is an index gap between item 𝑥𝑖 and 𝑥 𝑗 . This table summarizes when misalignment is helpful or harmful.

harmed in this case. For instance,Theorem 1 shows that the human
always receives less utility once 𝑥𝑖 is the most valuable item while
𝑥 𝑗 is less valuable.

Main takeaway:Thehuman gets hurt inworkingwith themis-
aligned algorithm if either (i) the human is highly inaccurate,
or (ii) both 𝑥𝑖 and 𝑥 𝑗 are nearly top items.

Next, we complement Lemma 2 by providing sufficient condi-
tions when misalignment is beneficial to the human.

Lemma 3. Collaboration with a misaligned algorithm is helpful
for the human under the Mallows model when some 𝑖′ ∈ [𝑖 − 1]
satisfies

𝑣𝑖′

𝑣𝑖
≥

∑
𝑟≠𝑖, 𝑗 𝜓 (𝑖, 𝑗, 𝑟 )∑𝑖′

𝑟=1𝜓 (𝑖, 𝑗, 𝑟 ) exp(−𝜙ℎ · ( 𝑗 − 𝑟 + 1))
1

1 − exp(−𝜙ℎ · Δ)
,

where Δ = 𝑗 − 𝑖 + 1 and 𝜓 (𝑖, 𝑗, 𝑟 ) = P[𝜋1 [: 2] = {𝑥𝑖 , 𝑥𝑟 }] − P[𝜋1 [:
2] = {𝑥 𝑗 , 𝑥𝑟 }] is always nonnegative for any 𝑟 ≠ 𝑖, 𝑗 .

Notice that𝜓 (𝑖, 𝑗, 𝑟 ) on the right-hand side depends only on the
algorithmic assistant’s distribution. In the case where most of the
values of 𝜓 (𝑖, 𝑗, 𝑟 ) concentrate on terms with 𝑟 ≤ 𝑖′ (e.g., the al-
gorithm is aligned with the human on the high-valued items), the
first term asks for an exponential gap between 𝑣𝑖′ and 𝑣𝑖 . Mean-
while, the second term depends on the index gap between the two
swapped items (i.e., Δ) and the accuracy level of the human (i.e.,
𝜙ℎ). The condition is more likely to hold when the index gap and
the accuracy level of the human are both non-trivial, i.e., larger
than some non-negligible constants. The following provides a con-
crete example where the condition holds.

Example 3. Consider the setting of four items and two algorithm
assistants that randomly select two items from the top three of their
ground-truth rankings, displaying the top two items with a higher
probability than displaying other subsets. Suppose the ground-truth
rankings of𝐴1 and𝐴2 are 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥1, 𝑥3, 𝑥2, 𝑥4 respectively,
where 𝑥2 and 𝑥3 are the misaligned items. The human has value of
𝑣1 = 100, 𝑣2 = 2, 𝑣3 = 1, 𝑣4 = 1. The human’s ranking satisfies the
Mallows model with accuracy parameter 𝜙ℎ = 1. Let 𝑖′ = 1. Then the
two sides of Lemma 3 are respectively given by

𝐿𝐻𝑆 =
𝑣1
𝑣2

=
100
2

= 50 𝑅𝐻𝑆 ≤ exp(3) · 1
1 − exp(−1) < 𝐿𝐻𝑆 .

Therefore, the human receives a higher utility when collaborating
with the misaligned algorithm 𝐴2 than the aligned one 𝐴1.

Main takeaway: The human benefits from collaborating with
a misaligned algorithm when there exists an item that is sig-
nificantly more valuable than 𝑥𝑖 and 𝑥 𝑗 , and (i) the human
possesses a non-trivial level of accuracy, and (ii) there is a
clear index gap between 𝑥𝑖 and 𝑥 𝑗 in their ranking.

Lastly, we remark that a similar set of extensions also holds un-
der the Plackett–Luce model. The formal theorem statements are
deferred to Appendix B. At a high level, similar to Lemma 2, when
the human is highly noisy or 𝑥𝑖 and 𝑥 𝑗 are nearly top items, mis-
alignment is harmful. Slightly different from Lemma 3, the positive
result under the Plackett–Luce model considers the value gap be-
tween the two items (i.e., 𝑣𝑖 − 𝑣 𝑗 ), which is consistent with the
definition of the distribution.

5 MULTIPLE HUMANS USING SINGLE AI:
WELFARE OBJECTIVES

In Section 4, we studied the question of which (potentially mis-
aligned) algorithm an individual human would prefer. In this sec-
tion, we study the question of which algorithm to select in order to
satisfy welfare notions over a population of humans. In particular,
this section focuses on the Mallows model (the rankings of both
the algorithm and the human satisfy the Mallows model), and we
will study algorithms that can either rearrange the orderings of
items of its ground-truth ranking 𝜋∗ or change its accuracy level
𝜙𝑎 .

There are various societal objectives that we may consider: in
Section 5.1, we study expected utilitarian social welfare. For this
objective, we show that finding the optimal arrangement of items
(e.g., determining the optimal central ordering of the algorithm) is
NP-hard. Finally, even though it is computationally hard, it can be
formulated as a linear mixed-integer program (MIP) with only a
linear number of binary variables. However, a welfare-maximized
strategy may not always be desirable in every respect: next, Sec-
tion 5.2 turns to other objectives, such as uplift. We provide coun-
terexamples where maximizing welfare violates uplift, and we also
find cases where introducing a higher noise level helps achieve up-
lift. Finally, we provide illustrations of solutions achieving uplift
for special cases (such as top-item recovery). We conclude by illus-
trating generalizations of our results with numerical simulations.

5.1 Social Welfare Maximization
First, recall that our definition of expected utilitarian social welfare
is given by:
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Definition 1 (Expected utilitarian social welfare). The utilitarian
social welfare of a joint system is the sum of expected utility of the
𝑛 types of humans

∑𝑛
𝑖=1 𝑝𝑖 · E[𝑢𝑖 (𝑥𝑖𝐶 )].

Next, we explore how we can maximize the utilitarian social
welfare. Our main result is Theorem 3, which shows that while
selecting the optimal accuracy (or noise) parameter is extremely
straightforward, selecting the optimal algorithmic ordering over
items can be NP-hard. Finding the optimal arrangement of items
can be reduced to the problem of finding the maximum indepen-
dent set, which is known to be NP-complete. In addition, given an
optimal arrangement, minimizing noise is always optimal. How-
ever, minimizing noise is not always better for any arrangement –
especially if the arrangement is highly (equivalently, maximizing
accuracy) misaligned with the ground-truth arrangements of the
majority of the population.

Theorem 3 (Computational hardness). The expected social welfare
is maximized when the algorithm’s distribution is noiseless. However,
it remains NP-hard to find 𝜋∗ that maximizes the expected social
welfare, even in the top-item recovery setting.

To complement the hardness result, we show that the welfare-
maximizing algorithm can be exactly characterized as the optimal
solution to a mixed-integer program (MIP) and solved efficiently
in practice, even for𝑚 = 20 items and heterogeneous populations
of humans with 720 types of humans. The full proof and detailed
empirical results can be found at [35, Appendix E.1] and Section 9.2.
Meanwhile, although finding the welfare-maximizing algorithm in
the top-item recovery setting is computationally hard, one can still
efficiently identify the welfare-maximizing algorithm among those
that achieve uplift, as we will show in Lemma 6.

Finally, we briefly discuss the noiselessness result for the opti-
mal arrangement in Theorem 3. This comes by showing that the
objective can be rewritten as the sum over all possible sets of 𝑘
items that could be presented to the population of humans: of all
of those sets, one maximizes utilitarian welfare, and thus determin-
istically returning that set wouldmaximize welfare as in Definition
1.

5.2 Uplift
However, a social welfare-maximizing strategy may not always be
desired as it can end up hurting some users (i.e, they make worse
decisions than they would acting by themselves). This is especially
true if a certain type of human’s ground-truth ranking 𝜌∗𝑖 does not
align well with most other humans’ ground-truth rankings, and so
to maximize expected social welfare, the algorithm may optimize
for one type of human preference at the expense of other types of
humans. As a result, these types of humans may receive less ac-
curate recommendations from the algorithm in the collaboration:
they may even obtain lower utility than they would by themselves.
A social welfare desiderata relating to this objective is uplift across
the population of people: when is it possible to design an algorithm
such that every type of human benefits, relative to the utility they
would obtain from solving the problem by themselves?

Definition 2 (Uplift). A human-algorithm joint system achieves
uplift if the expected utility of every type of human is improved:
E[𝑢𝑖 (𝑥𝑖𝐶 )] > E[𝑢𝑖 (𝑥𝑖𝐻 )] for any 𝑖 ∈ [𝑛]

5.

As a warm-up, we first consider the special case where the hu-
man is aligned with the algorithm on every item for which it has
positive utility: the following lemma shows that uplift (e.g., strict
benefit for the human) is guaranteed.

Lemma 4. Suppose human of type 𝑖 only has positive values for the
top 𝑇 items, i.e., 𝑣𝑖, 𝑗 > 0 for 𝑗 ≤ 𝑇 and 𝑣𝑖, 𝑗 = 0 for 𝑗 > 𝑇 . Then if
𝜋∗ ( 𝑗) = 𝜌∗ ( 𝑗) for any 𝑗 ≤ 𝑇 , 𝜙𝑎 = 𝜙ℎ , and 1 < 𝑘 < 𝑚, uplift is
achieved.

Note that Lemma 4 strictly generalizes results in [34], which pro-
vided these results only for when exactly 2 items are presented and
the human is in the top item recovery case (only has value for her
top item). Moreover, Lemma 4 does not put any constraint on the
zero-valued items, and the algorithm and human can bemisaligned
on these items. The proof can be found at [35, Appendix E.3].

5.2.1 Tension between Social Welfare and Uplift. In the above case,
a social welfare maximizing arrangement implies uplift (if feasible)
since there is only one type of human. However, when it comes to
multiple misaligned humans, forcing welfare-maximization could
hurt some type of human, e.g., when there are two types of hu-
mans with population shares of 0.99 and 0.01 and completely dif-
ferent preferences, maximizing welfare makes the algorithm fully
aligned with the preferences of the majority type, thereby hurting
the minority group.

Secondly, uplift can be viewed as a type of fairness notion: it
requires that each type of human receive some benefit from using
the algorithm. In contrast, social welfare is a well-accepted metric
for evaluating the algorithmic efficiency. In Section 9.3, we further
describe numerical experiments on connections between the two
objectives. We study the change in optimal social welfare after en-
forcing the uplift constraint. Usually, enforcing uplift will reduce
the optimal social welfare, especially when the distribution of hu-
mans is highly imbalanced, e.g., certain types of humans dominate
the population. In addition, in Section 6, we compare the two opti-
mal algorithmic solutions, each optimizing a single welfare objec-
tive, on a real-world dataset. We also find that solely maximizing
utilitarian welfare could cause extreme unfairness.

5.2.2 Small Noise Facilitates Uplift. Given the tension between the
two objectives, small noise may be an effective method to achieve
uplift. Considering the same setting as the last example, it seems
likely that a small degree of randomization could sharply increase
welfare for the less populous type of human. Lemma 5 shows this
more formally and the proof can be found at [35, Appendix E.4].

Lemma 5. There exist settings where uplift can occur at lower accu-
racy (higher noise), but fails at higher accuracy.

We remark that Lemma 5’s message is in line with other works
on fairness (e.g., [46, 66]) that deem randomization to be helpful
for fairness. One difference in our setting is that we expect that in
many cases there will be relatively large benefits in terms of uplift
5We refer the reader to the related work section for discussion about the relation
between uplift and complementarity [13]
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from relatively small levels of noise (and thus, relatively small im-
pact on utilitarianwelfare objective).This is because small amounts
of noise that result in occasionally including a new item has asym-
metric costs and benefits: it has large benefits for users who stronger
prefer that item to those that are already included because theywill
be able to select it with relatively high probability. However, it has
small negative impacts on users who have low value for that item,
since on the occasions when it is included, they will have a high
probability of correctly ignoring that item as irrelevant.

5.2.3 General Results for Uplift. Motivated by the above examples,
we consider how to design an algorithm that meets the objective
of uplift. We begin by noting that there are cases where achiev-
ing uplift is impossible. To build intuition, consider a scenario in
which humans are highly misaligned in their top preferences. In
such situations, an uplift strategy is only feasible if all of their most
preferred items can be accommodated within the limited window
of size 𝑘 . This naturally motivates characterizing instances where
uplift is achievable. To this end, we first show that it remains NP-
hard to determine the existence of a strategy (which may be noisy)
that achieves uplift. However, we note that when the size of pre-
sented items 𝑘 is constant, one can verify whether a given strategy
achieves uplift. Thus, for a constant 𝑘 , the problem is in NP. We
note that in real-life settings, we expect 𝑘 to be relatively small,
given that humans would likely be unable to process very large
subsets of items. The proof (can be found at [35, Appendix E.5]) is
based on a reduction from the vertex cover problem.

Theorem 4. It is NP-hard to determine whether there exists a strat-
egy satisfying uplift (𝜋∗, 𝜙𝑎). Further, it is NP-complete when 𝑘 is
given as a constant (which means whether a given strategy (𝜋∗, 𝜙𝑎)
achieves uplift can be verified in polynomial time).

Next, we provide characterizations of what an uplift strategy
looks like in some special cases, such as top item recovery (where
we show that the optima algorithm is a noiseless algorithm and
presents only items that at least one human values), and where
the humans share the same set of best items.

For the top item recovery setting, consider a simple strategy that
ranks all these top items first in the algorithm’s ranking and sets
the noise as zero (equivalently, set 𝜙𝑎 as +∞). Lemma 6 shows that
the simple strategy achieves uplift. We note that maximizing social
welfare remains NP-hard even in this special case (using the same
reduction of Theorem 3).

Lemma 6. In the top item recovery setting, when the ground-truth
rankings of humans satisfy |M0 | ≤ 𝑚 − 1 whereM0 is the set of
distinct items that some human has positive value for, then always
presentingM0 to the human achieves uplift and also maximizes the
expected utilitarian social welfare among all the noiseless algorithms
that achieve uplift.

6 EMPIRICAL STUDY
In this section, we conduct an empirical study of human-AI col-
laboration with misaligned ground-truth rankings on a real-world
dataset to answer the following question:
• (Tension between Welfare Objectives): how does human accu-

racy affect the tension between different welfare objectives?

Weuse the sushi preference dataset [48], which consists of about
5k rankings of ten kinds of sushi, where we denote the ten types
of sushi by 𝑥1, . . . , 𝑥10. For computational efficiency, we consider
only the partial rankings of the humans in our sushi dataset over
the items 𝑥1, . . . , 𝑥5, treating these partial rankings as their ground-
truth preferences. Each ranking is also associated with the fraction
of the population in the dataset who had this preference over the
types of sushi. A detailed breakdown of the most frequent sushi
rankings is presented in Table 3 ([35, Appendix F]).

Note that in this dataset, it is inherently impossible to distin-
guish between a) population-level heterogeneity in preferences,
and b) user-level noise in reporting those preferences. To our knowl-
edge, there is not a preference dataset that cleanly displays both a)
and b). As such, in this section we make the assumption that users
have reported their sushi preferences perfectly (no errors from b)
and that the preference dataset simply reflects user heterogeneity
(only difference is from a). In order to model user-level noise, we
add noise (e.g. Mallows) on top of the ground-truth preferences
within [48]. Furthermore, because this dataset does not include ex-
plicit human valuation scores for the sushi items, we assume item
values within each ranking is determined by their Borda counts.
Formally, given a ranking 𝜋 over𝑚 items {𝑥1, . . . , 𝑥𝑚}, where 𝜋 (𝑖)
denotes the position of item 𝑥𝑖 (with 𝜋 (𝑖) = 1 being the most pre-
ferred), the Borda score assigned to item 𝑥𝑖 is

𝐵(𝑥𝑖 ;𝜋) =𝑚 − 𝜋 (𝑖).

Thus, the top-ranked item receives a score of 𝑚 − 1, the second-
ranked item a score of 𝑚 − 2, and so on, with the least-preferred
item receiving a score of 0. This provides a simple cardinal approx-
imation of ordinal preferences, which we use as the value function
in our experiments.

The objective is to design an algorithm that presents only three
items from 𝑥1, . . . , 𝑥5 to each human to maximize a chosen notion
of welfare. We find this experiment especially natural for our set-
ting: if a restaurant created a “menu” of options that is quite large
(> 100), a user would probably have a low probability of finding
sushi she likes. However, if the restaurant creates a very small
menu, then user-level heterogeneity in preferences might mean
that some humans are hurt by the algorithm. In this section, we ex-
plore these trade-offs within the specific sushi preference dataset.
We assume the algorithm is perfectly noiseless, so the menu al-
ways consists of the top three sushis in its ground-truth ranking.
To study the tension between different welfare objectives, we com-
pare three different welfare objectives:
(1) Let𝐴𝑤 denote the algorithm that maximizes utilitarian welfare.
(2) Let𝐴𝑚 denote themajority ranking, i.e., the ranking supported

by the largest number of individuals.
(3) Let 𝐴𝑢 denote the algorithm that maximizes uplift, defined as

the number of humans who benefit from collaboration.
In Figure 4, we plot the utilitarian welfare and uplift achieved by

each of the algorithms across different levels of human accuracy.
In the left plot, we observe that as humans become more accurate,
their expected utilitarian welfare increases under both𝐴𝑚 and𝐴𝑤 .
However, this monotonic improvement does not hold for 𝐴𝑢 : be-
yond a certain human accuracy threshold, the performance of this
algorithm declines.
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Figure 4: Utilitarian welfare and uplift achieved by the ma-
jority algorithm 𝐴𝑚 , the welfare-maximizing algorithm 𝐴𝑤 ,
and the uplift-maximizing algorithm 𝐴𝑢 across varying lev-
els of human accuracy.

Interestingly, in the right plot, we observe that as humans be-
come more accurate, after a certain threshold, all algorithms can
guarantee positive uplift for a smaller fraction of individuals. This
suggests that when human judgments are noisier, a larger propor-
tion of people benefit from collaboration with a fixed algorithm.
However, as humans become more accurate, no single algorithm
remains universally beneficial. Moreover, we observe that the algo-
rithm optimizing utilitarian welfare performs substantially worse
than the other two in terms of uplift across most accuracy regimes.
This suggests a trade-off between the uplift and utilitarian welfare
objectives. In this dataset, the majority algorithm performs rela-
tively well on both metrics.

7 DISCUSSION
In this paper, we studied a model of human-algorithm collabora-
tion in a setting where the algorithm acts as a curator of items
for a noisy human, and the algorithm may be misaligned with the
human’s preferences over items. In particular, we define misalign-
ment as a disagreement on the relative ordering over items by
value: while such misalignment can be detrimental (because the
algorithmic assistant returns items the human may find subopti-
mal), it can also be beneficial (because the assistant makes “differ-
ent mistakes” that the human may be more easily able to correct).
Our goal in this paper was to analyze when the relative benefits of
misalignment outweigh the costs.

In Section 4 we began by studying the preferences an individ-
ual human would have over an algorithmic assistant, showing that
certain types of misalignment are helpful. In Section 5, we turned
to the question of designing an algorithm to maximize welfare
over a population of humans who have diverse preferences. While
in general it is not possible to simultaneously maximize the wel-
fare of each human engaging with the algorithm, we study how
to maximize some collective welfare objectives, like maximizing
utilitarian welfare or ensuring that each human strictly benefits
from using the algorithmic assistant, relative to what utility she
could get by herself. In general, we show that exactly achieving ei-
ther of these objectives is computationally hard. However, we also
give positive results for restricted settings: For maximizing utili-
tarian welfare, we present a mixed-integer program, building on
similar efficient formulations previously applied to problems in-
volving Mallows preferences. In addition, we identify compelling

special cases where uplift is attainable and provide an explicit al-
gorithm that achieves it. Throughout, we supplement our theoret-
ical results with numerical simulations, exploring generalizations
in permutation distributions as well as values agents have for each
item.

8 EXTENSIONS
In Section 8.1, we describe a few extensions of our theoreticalmodel,
including the extensions of the noisy model and the way of human-
algorithm interaction. In Section 8.2, we discuss substantial impli-
cations for policy making, specifically on the relative benefits and
harms of misalignment for users.

8.1 Model Extensions
First, some extensions could involve relaxing our theoreticalmodel.
For example, our main theoretical results focus on permutation
models related to the number of inversions (e.g., theMallowsmodel).
While we show in numerical simulations that our core results gen-
eralize to other models such as RUM, extending these results the-
oretically (or extending our results to other classes of permuta-
tions) could be interesting. Additionally, one core assumption of
our work is that humans have the same magnitude of preferences:
that is, every human has the same value for their favorite item, the
same value for their second-favorite item, and so on (even though
the identity of their favorite items may differ). This corresponds to
assuming that all humans are equally “picky”. While this assump-
tion is necessary for tractability purposes, this is likely not true
in general: some humans may be equally happy with multiple op-
tions, while other humans may be much more selective. Relaxing
this assumption may lead to different trade-offs in objectives.

Other extensions could change our model of human-algorithm
interaction. For example, our model of subset curation assumes
that the human observes the set of presented items as an unordered
set and is not biased by any inherent ordering of items. This is al-
most certainly not true in practice, as it has been demonstrated that
humans are often biased by the order in which items are presented
(e.g., see [3, 29, 47]), and this effect has been studied in human-
algorithm collaboration more specifically (e.g. [34, 56, 74]). It could
also be possible that the human and algorithm undergo a sequence
of back-and-forth interactions which ultimately end up at a final
solution (as in [23]), which may lead to different implications on
personalization. Finally, our results on optimizing the algorithm
for different social welfare functions assume that the algorithm
has perfect knowledge of the distribution of human preferences.
In practice, this is almost certainly not the case, and it could be
useful to study settings where the algorithm must learn human
preferences over multiple interactions.

8.2 Implications for Policy
Our results have potential implications for policymakers, design-
ers of algorithms, and users of algorithmic tools.

Potential for benefits in misalignment. In some real-life settings,
humans have near-perfect ability to identify the “correct” outcome
(e.g., the political opinion that they most closely identify with).
However, in many real-life settings, humans may only be able to
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imperfectly (noisily) recover their own true preferences: prior re-
search has shown that humans noisily pick the favorite item from
sets, such as presented movies or items on a menu [4, 44, 52, 59].
In this setting, our results show that having algorithms that are
“misaligned” in specific ways can be beneficial. This implies that
designers of algorithms should maybe not always focus on design-
ing algorithms that personalize to individual humans (eliminating
misalignment): in settings where humans are noisy, personalizing
may end up being harmful. This implies that algorithmic designers
may want to take different strategies towards alignment depend-
ing on the context in which humans will use the tool, focusing
on alignment more in noiseless settings and less in settings where
humans are expected to know their own preferences less well.

Benefits of positive temperature. Our results also show that there
can be benefits to algorithmic noise (e.g., positive temperature)
when a single algorithm is serving a population of heterogeneous
users. Benefits of randomization for goals related to fairness have
been shown in other settings (e.g., [46, 66]), though to our knowl-
edge, this question is less well studied in the context of complemen-
tarity or similar benchmarks. Most generative AI tools have a con-
stant temperature across multiple queries: our work suggests that
for certain welfare objectives, it could be helpful to have temper-
ature change dynamically, being lower in settings where human
opinions are roughly in agreement and larger in settings where
human opinions are more diverse.

Implications for users. Our results also suggest strategies for users
of algorithmic tools. Users sometimes have direct and indirectways
of controlling personalization: for example, they can choose to ac-
cept or delete cookies, can opt to use incognitomode, can volunteer
or (sometimes) delete information generative tools have stored on
their prior interactions, or can select tools that they believe to be
more or less closely aligned with their beliefs. Our results provide
motivation for users to sometimes strategically seek options that
reduce personalization, even absent of other concerns such as pri-
vacy.

Tensions in societal goals. It should not be surprising that some
societal goals may be in tension with each other. However, we
hope that our research could highlight particular objectives that
are relatively understudied in the pluralistic alignment setting, such
as ensuring all types of humans benefit in a randomized task (as
compared to their utility if they solved the problem themselves).
While we believe that there could be contexts in which either util-
itarian welfare or goals like uplift would be optimal, we think it
is worth having designers deliberately decide on which they may
choose to optimize in different contexts.

9 NUMERICAL SIMULATIONS
9.1 Numerical Extension of theorem 1
We consider 𝑚 = 4 items, of which the algorithm displays 𝑘 = 2.
For the human, the value of item 𝑥𝑖 , 𝑣𝑖 ∝ 𝑒−𝛽 · 𝑗 , where 𝛽 ≥ 0
controls the heterogeneity of values. Heterogeneity helps to relax
the top item recovery case smoothly.

9.1.1 Extensions to Mallows Model. The first experiment assumes
that both human and algorithm rankings follow a Mallows model

with the same accuracy of 𝜙𝑎 = 𝜙ℎ = 0.5. Let 𝜌∗ = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
be the human’s ground-truth ranking, and let 𝜋∗ be an arbitrary
algorithm’s ground-truth ranking. Figure 5 plots the difference in
human’s expected utility working with various misaligned algo-
rithms, and the aligned algorithm one. The right figure Figure 5
restricted to top-aligned algorithms (algorithms that place 𝑥1 first).

For small 𝛽 , valuations are nearly uniform, so the human’s util-
ity is similar across all algorithms. As 𝛽 increases, the aligned al-
gorithm performs best, but when 𝛽 becomes sufficiently large, the
utility is dominated by the top item 𝑥1, and top-aligned algorithms
yield higher utility. In the extreme top-item recovery case (Theo-
rem 2), the most inverted top-aligned algorithm achieves the high-
est utility, explaining why the curve for 𝜋∗ = (𝑥1, 𝑥4, 𝑥3, 𝑥2) dom-
inates at large 𝛽 . Consistent with Theorem 1, all top-aligned algo-
rithms outperform the aligned one when 𝛽 is large.
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Figure 5: Comparison of human’s expected utility differ-
ences after collaboration with a misaligned and an aligned
algorithm, as a function of 𝛽 . Each curve represents an algo-
rithm with the corresponding ground-truth ranking.

9.1.2 Extensions to Random Utility Model. We perform a similar
simulation by assuming that both the human and the algorithm
follow the Plackett-Luce RUM with Gumbel noises of 0.1. In Fig-
ure 6, we observe that top-aligned algorithms quickly outperform
others. This observation mirrors the second property established
in Theorem 1: swapping item 𝑥1 from the top position with any
lower-ranked item yields a new algorithm ranking that is less ad-
vantageous for the human.

We emphasize an important distinction in the RUM setting: un-
like the Mallows model, modifying item values alters the probabil-
ities of sampling different rankings. As a result, when 𝛽 becomes
large, the probability that top-aligned algorithms present item 𝑥1,
as well as the probability that the human selects item 𝑥1, both ap-
proach 1. This convergence explains why, at high 𝛽 values, the ex-
pected utilities of all top-aligned algorithms and the aligned algo-
rithm become nearly identical in RUM.

Main takeaway: In the Mallows model and RUM, misalignment
on relatively small-valued items still helps the human.

9.2 Performance of MIP
We evaluate the performance of the MIP by varying both the num-
ber of items𝑚 and the number of types of humans 𝑛. In the first
setting, we consider two humans with ground-truth rankings 𝜌∗1 =
(𝑥1, 𝑥2, 𝑥3, 𝑥4, . . . , 𝑥𝑚) and 𝜌∗2 = (𝑥4, 𝑥2, 𝑥3, 𝑥1, . . . , 𝑥𝑚), where only
𝑥1 and 𝑥4 are swapped, and utilities (𝑣𝑖, 𝑗 )𝑚𝑗=1 = 4, 3, 2, 1, 0 . . . , 0. We
vary𝑚 from 10 to 70 and test 𝑘 = 2, 4, 6, 8. For each test, we vary
the frequencies of the first type of human from 0 to 1 and take
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Figure 6: Comparison of human’s expected utility differ-
ences under RUM.

the average of the running time. In the second setting, humans
are drawn from a Mallows distribution with 𝑛 = 𝑡 ! possible types,
𝑡 = 1, . . . , 6. We fix𝑚 = 20, and test 𝑘 = 2, 4, 6, 8. As shown in Fig-
ure 7, all instances terminate within 175 seconds, with the slowest
cases taking 40.46 and 169.92 seconds, respectively. The running
time grows polynomially in𝑚 and linearly in 𝑛.
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Figure 7: Running time of MIP (varying𝑚 and 𝑛)

Main takeaway. Thewelfare-maximizing algorithm can be found
efficiently in practice.

9.3 Tension between Welfare Objectives
The part mainly discusses the effect of enforcing uplift on social
welfare. We consider 𝑚 = 6 items and the humans’ preferences
differ only in the top three items, which follow a Mallows dis-
tribution with parameter 𝛾 , reflecting the balance of the popula-
tions. When𝛾 is large, most humans have preferences aligned with
(𝑥1, 𝑥2, . . . , 𝑥𝑡 ). When 𝛾 is small, the humans’ preferences become
more dispersed. Each human’s utilities are set as (𝑣𝑖, 𝑗 )6𝑗=1 = 1, 1, 0.5, 0.2, 0, 0.
All humans share the same accuracy parameter 𝜙ℎ , which we vary
from 0 to 3 in increments of 0.3. Figure 8 plots the social welfare
of the welfare-maximizing algorithms with and without the uplift
constraint under different values of 𝛾 . The expected social welfare
under the uplift constraint is consistently lower than that without
it. When human preferences become more concentrated (𝛾 = 3),
the optimal solutions start to diverge. The largest welfare gap oc-
curs at𝜙ℎ = 1, where the expected social welfare without the uplift
constraint is 0.989, compared to 0.954 with the constraint.
Main takeaway: Enforcing uplift reduces the optimal social welfare,
especially when humans’ distribution is imbalanced.
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A NOISY PERMUTATION MODEL
Denote by 𝜋 ◦ (𝑥𝑖𝑥 𝑗 ) the ranking after swapping the locations of 𝑥𝑖 and 𝑥 𝑗 in ranking 𝜋 .

Definition 3 (Inversion-monotonicity and label-invariance). Adistribution𝜎 ∼ D(𝜎∗)with ground-truth ranking𝜎∗ is inversion-monotonic
if P[𝜎 = 𝜎1] > P[𝜎 = 𝜎 ◦ (𝑥𝑖 , 𝑥 𝑗 )] where 𝑥𝑖 ≻𝜎∗ 𝑥 𝑗 and 𝑥𝑖 ≻𝜎1 𝑥 𝑗 and label-invariant if relabeling the items (i.e., applying an arbitrary
permutation to all items) does not change the probability of any ranking. We say that two distributions are isomorphic if one is identical to
the other by relabeling the items.

A.1 Mallows Model
The Mallows model (or Mallows distribution) [55] generates a distribution over permutations based on their number of inversions relative
to a central ranking (also known as the Kendall-Tau distance). A Mallows model D(𝜋∗, 𝜙) consists of two components: a central ranking
𝜋∗ and an accuracy parameter 𝜙 ≥ 0. The probability of a permutation 𝜋 occurring is P[𝜋] = 1

𝑍 · exp(−𝜙 · 𝑑 (𝜋
∗, 𝜋)), where 𝑍 is the

normalization constant and 𝑑 (𝜋∗, 𝜋) is the Kendall-Tau distance between 𝜋 and 𝜋∗. We assume all accuracy parameters used in this paper
are positive.

A.2 Plackett-Luce Model
The random utility model (RUM) is commonly used as a model of permutations [72], where a permutation is generated as follows: i.i.d.
noise is added to the true value of each item to produce 𝑣𝑖 = 𝑣𝑖 + 𝜖 , for 𝜖 ∼ D: then, the items are sorted in order of the noised values {𝑣𝑖 }.
Note that in a RUM, the probability of sampling a particular ranking depends not only on the number of inversions but also on the specific
valuations of the items. Although there is no definition of “ground-truth ranking” or “central ranking” in RUM, we refer to the ranking that
is consistent with the ordering of the item values as the ground-truth ranking.

When 𝜖 follows i.i.d. Gumbel noise 𝐺 (𝜇, 𝛽), following the analysis in [52, 59], the probability of a permutation 𝜎 is given by

P[𝜋] =
𝑚∏
𝑗=1

exp(𝑣𝜋 𝑗 /𝛽)∑𝑚
ℓ=𝑗 exp(𝑣𝜋ℓ /𝛽)

, (1)

where 𝑣𝜋𝑖 is the value of the 𝑖-th item in the ranking 𝜋 . In particular, as 𝛽 increases and item values become more heterogeneous, the
probability of sampling a ground-truth ranking also increases.

B EXTENSIONS OF THEOREM 1
Lemma 7. Collaboration with a misaligned algorithm is harmful for the human under the Plackett-Luce model, when 𝑣0 − 𝑣 𝑗 ≤ 1.27𝛽 .

Lemma 8. Collaboration with a misaligned algorithm is helpful under the Plackett-Luce model for the human when some 𝑖′ ∈ [𝑖 −1] satisfies

𝑣𝑖′

𝑣𝑖
≥

∑
𝑟≠𝑖, 𝑗

𝜓 (𝑖, 𝑗,𝑟 )
exp( (𝑣𝑟 −𝑣𝑖 )/𝛽 )+1∑𝑖′

𝑟=1
𝜓 (𝑖, 𝑗,𝑟 )

exp( (𝑣𝑟 −𝑣𝑖 )/𝛽 )+1
· 2
1 − exp (−Δ/𝛽) ,

where Δ = 𝑣𝑖 − 𝑣 𝑗 and𝜓 (𝑖, 𝑗, 𝑟 ) = P[𝜋1 [: 2] = {𝑥𝑖 , 𝑥𝑟 }] − P[𝜋1 [: 2] = {𝑥 𝑗 , 𝑥𝑟 }] ≥ 0.

C PROPERTIES OF NOISY PERMUTATION MODEL
C.1 Basic Properties
Let 𝔖(𝑀) be the set of all rankings of 𝑀 . Denote by 𝑥𝑖 ≻𝜋 𝑆 for a set of items 𝑆 if 𝑥𝑖 is before any item 𝑥 𝑗 ∈ 𝑆 \ {𝑥𝑖 }. A swap (𝑥𝑖𝑥 𝑗 ) is
valid with respect to 𝜋 and a ground-truth ranking 𝜋∗ if 𝜋 and 𝜋∗ differ on the relative ranking of 𝑥𝑖 and 𝑥 𝑗 . By the definition of inversion-
monotonicity, if (𝑥𝑖𝑥 𝑗 ) is a valid swap with respect to any given ranking 𝜋 and a ground-truth ranking 𝜋∗, then 𝜋 ◦ (𝑥𝑖 , 𝑥 𝑗 ) has a higher
probability than 𝜋 . Moreover, according to [34, Lemma 1], the number of inversions reduces by at least one after the swap.

Lemma 9. LetD be an inversion monotonic distribution with ground-truth ranking 𝜋∗. The random permutation 𝜋 is sampled fromD. For any
subset S of 𝑘 items, the probability of S being the first 𝑘 items of 𝜋 decreases if substituting 𝑥𝑖 ∈ S with another item 𝑥 𝑗 ∉ S with 𝑥𝑖 ≻𝜋∗ 𝑥 𝑗 .

PRoof. Let S′ = S \ {𝑥𝑖 }∪ {𝑥 𝑗 }. Define two set of permutations𝔖S and𝔖S′ as the set of permutations that place S and S′ at the first 𝑘
locations, respectively. Then we define a bijective mapping from a permutation 𝜋 ∈ 𝔖S to a permutation 𝜋 ′ ∈ 𝔖S′ by swapping the items
𝑥𝑖 and 𝑥 𝑗 . By inverse-monotonicity, the probability of 𝜋 ′ is (weakly) higher than that of 𝜋 . Therefore, we can conclude that the probability
of S′ being the first 𝑘 of 𝜋 is greater than that of S. □

Lemma 10. Let D be an inversion monotonic distribution with ground-truth ranking 𝜋∗. A permutation 𝜋 is drawn from the distribution D.
Let S be a subset of 𝑘 items such that 𝑥ℓ ∈ S, 𝑥𝑟 ∉ S, and 𝑥ℓ ≻𝜋∗ 𝑥𝑟 . Define S′ = (S \𝑥ℓ ) ∪𝑥𝑟 . Then, for any item 𝑥𝑖 ∈ S \ {𝑥ℓ }, the probability
that 𝑥𝑖 is ranked first among S in 𝜋 is less than the probability that it is ranked first among S′ in 𝜋 :

P[𝑥𝑖 ≻𝜋 S] ≤ P[𝑥𝑖 ≻𝜋 S′] .
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The inequality becomes tight only when 𝑥𝑟 and 𝑥ℓ are totally indistinguishable under D.

PRoof. Let 𝔖𝑅 = {𝜋 : 𝑥𝑖 is before S′ in 𝜋}, and 𝔖𝐿 = {𝜋 : 𝑥𝑖 is before S in 𝜋}. To show the inequality, it suffices to prove P[𝜋 ∈
𝔖𝑅 \𝔖𝐿] > P[𝜋 ∈ 𝔖𝐿 \𝔖𝑅]. By definitions of 𝔖𝐿 and 𝔖𝑅 , 𝔖𝑅 \𝔖𝐿 contains the permutations where 𝑥ℓ is placed before 𝑥𝑖 and 𝑥𝑖 is
placed before other items of S′ and 𝑥𝑟 . Similarly,𝔖𝐿 \𝔖𝑅 consists of the permutations where 𝑥𝑟 is placed before 𝑥𝑖 and 𝑥𝑖 is placed before
other items of S (including 𝑥ℓ ). Define a mapping from𝔖𝐿 \𝔖𝑅 to𝔖𝑅 \𝔖𝑅 by swapping 𝑥ℓ and 𝑥𝑟 , which is a valid mapping by definition.
As the distribution is inversion monotonic, the probability of the new permutation is greater than the original one, which implies that
P[𝜋 ∈ 𝔖𝑅 \𝔖𝐿] > P[𝜋 ∈ 𝔖𝐿 \𝔖𝑅] and concludes the lemma. □

C.2 Properties of Mallows Model
In Table 2, we provide an overview of the properties of the Mallows model used in our proofs, where 𝜋 ∼ D(𝜋∗, 𝜙) and 𝑍𝑚 (𝜙) =∑𝑚
𝑖=1 exp(−𝜙 (𝑖 − 1)). Without loss of generality, we assume 𝜋∗ = (𝑥1, . . . , 𝑥𝑚) in this subsection.

Event Probability Source
𝑥𝑖 ranked the first in 𝜋

exp(−𝜙 · (𝑖−1) )
𝑍𝑚 (𝜙 ) [10]

𝑥1 ranked at the 𝑖-th location in 𝜋
exp(−𝜙 · (𝑖−1) )

𝑍𝑚 (𝜙 ) [10]
𝑥1 ranked at the first 𝑘 locations in 𝜋

𝑍𝑘 (𝜙 )
𝑍𝑚 (𝜙 ) [10]

𝑥𝑖 ranked before 𝑥 𝑗 with 𝑖 < 𝑗 and 𝑘 = 𝑗 − 𝑖 + 1 in 𝜋 𝑘
1−exp(−𝜙 ·𝑘 ) −

𝑘−1
1−exp(−𝜙 · (𝑘−1) ) [16]

a set of items 𝑆 being the first 𝑘 items of 𝜋 closed-formed Lemma 11
the first item of 𝑆 in 𝜋 is the best among 𝑆 in 𝜋∗ ≥ 1

𝑍𝑘 (𝜙 ) with 𝑘 = |𝑆 | Lemma 15
the first item of 𝑆 in 𝜋 is within the top 𝑠-th among 𝑆 in 𝜋∗ ≥ 𝑍𝑠 (𝜙 )

𝑍𝑘 (𝜙 ) with 𝑘 = |𝑆 | Lemma 16
Table 2: Properties of the Mallows model.

C.2.1 Item Location. We first show that, for every set of S with 𝑘 items, the probability of S being the first 𝑘 items of 𝜋 can have a closed-
form expression in the Mallows model using the insertion-based sampling. Consider a fixed order 𝜋𝑆 = (𝑥 𝑗 (1) , . . . , 𝑥 𝑗 (𝑘 ) ) of the 𝑘 items. We
insert the 𝑘 items in order 𝜋𝑆 . At the time of inserting the 𝑖-th one, the probability of placing 𝑥 𝑗 (𝑖 ) at the 𝑖-th location conditioned on the
previous insertion, depends on the relative location of 𝑥 𝑗 (1) among S and the inserted items. Consequently, it implies the probability of the
prefix is solely determined by the number of inversions in 𝜋𝑆 . By summing it up for all 𝜋𝑆 , we get a closed-form probability of S being the
first 𝑘 , which only depends on the sum of indices of items of S. The formal theorem statement and proof are presented as follows:

Lemma 11. In a Mallows distribution 𝜋 ∼ D(𝜋∗, 𝜙), given a subset 𝑆 of items of size 𝑘 , the probability of set 𝑆 of being the first 𝑘 items of 𝜋
is given by

P[𝜋 [: 𝑘] = 𝑆] = exp

(
−𝜙 ·

(∑
𝑥 𝑗 ∈𝑆

𝑗 − 𝑘 (𝑘 + 1)
2

))
·

𝑘∏
𝑖=1

𝑍𝑖 (𝜙)
𝑍𝑚−𝑖+1 (𝜙)

.

PRoof. Fix an order 𝜋𝑆 of 𝑆 . Below, we give the probability of 𝜋𝑆 being the prefix of 𝜋 . Denote the 𝑘 items by 𝑥 𝑗 (1) , . . . , 𝑥 𝑗 (𝑘 ) according
order 𝜋𝑆 . We insert the 𝑘 items in order. At time of inserting the 𝑖-th item 𝑥 𝑗 (𝑖 ) , consider the probability of locating 𝑥 𝑗 (𝑖 ) at the 𝑖-th place
in 𝜋 conditioned on 𝑥 𝑗 (1) , . . . , 𝑥 𝑗 (𝑖−1) being located as the first 𝑖 − 1 items of 𝜋 . Observe that the number of inserted items that are placed
before 𝑥 𝑗 (𝑖 ) in the ground truth ranking 𝜋∗ is equal to |{𝑖′ : 𝑗 (𝑖′) < 𝑗 (𝑖) ∧ 𝑖′ < 𝑖}|. Denote that number by 𝐴(𝑖). The current item 𝑥 𝑗 (𝑖 )
is the ( 𝑗 (𝑖) − 𝐴(𝑖))-th item among the set of remaining items 𝑀 \ {𝑥 𝑗 (𝑡 ) }𝑖−1𝑡=1 . Then, according to the property of the Mallows model, the
probability of 𝑥 𝑗 (𝑖 ) being placed in 𝑖-th place in 𝜋 conditioned on the past insertion is given by

P
[
𝜋 (𝑖) = 𝑥 𝑗 (𝑖 ) | ∧𝑖−1𝑡=1𝜋 (𝑡) = 𝑥 𝑗 (𝑡 )

]
=

1
𝑍𝑚−𝑖+1 (𝜙)

· exp (−𝜙 · ( 𝑗 (𝑖) −𝐴(𝑖) − 1)) . (2)

Based on it, the probability of 𝜋𝑆 being the prefix of 𝜋 is equal to the product of these conditional probabilities, which is given by

P
[
∧𝑘𝑖=1𝜋 (𝑖) = 𝑥 𝑗 (𝑖 )

]
=

𝑘∏
𝑖=1

Pr
[
𝜋 (𝑖) = 𝑥 𝑗 (𝑖 ) | ∧𝑖−1𝑡=1𝜋 (𝑡) = 𝑥 𝑗 (𝑡 )

]
(By the chain rule)

=
𝑘∏
𝑖=1

exp (−𝜙 · ( 𝑗 (𝑖) −𝐴(𝑖) − 1))
𝑍𝑚−𝑖+1 (𝜙)

(By Equation (2))
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By direct calculation, we can see that

P
[
∧𝑘𝑖=1𝜋 (𝑖) = 𝑥 𝑗 (𝑖 )

]
= exp

(
−𝜙 ·

𝑘∑
𝑖=1

( 𝑗 (𝑖) − 𝑖 + 𝑖 − 1 −𝐴(𝑖))
)
·

𝑘∏
𝑖=1

1
𝑍𝑚−𝑖+1 (𝜙)

.

Notice that the term 𝑖−1−𝐴(𝑖) is essentially the number of items that are placed before 𝑥 𝑗 (𝑖 ) in 𝜋 but ranked after 𝑥 𝑗 (𝑖 ) in the ground-truth
ranking 𝜋∗. Hence, each of them forms an inversion with 𝑥 𝑗 (𝑖 ) . Thus, the sum of 𝑖 − 1 − 𝐴(𝑖) over 𝑖 equals to the number of inversions of
𝜋𝑆 . Therefore, we have

P
[
∧𝑘𝑖=1𝜋 (𝑖) = 𝑥 𝑗 (𝑖 )

]
= exp

(
− 𝜙 ·

( ∑
𝑥 𝑗 ∈𝑆

𝑗 − 𝑘 (𝑘 + 1)
2

))
· exp(−𝜙 · inv(𝜋𝑆 )) ·

𝑘∏
𝑖=1

1
𝑍𝑚−𝑖+1 (𝜙)

. (3)

By summing the above equation over all the permutations of items in 𝑆 , we can obtain that

P[𝜋 [: 𝑘] = 𝑆] =
∑

𝜋𝑆 ∈𝔖 (𝑆 )
P

[
∧𝑘𝑖=1𝜋 (𝑖) = 𝑥 𝑗 (𝑖 )

]
.

Then applying Equation (3), since the sum of exp(−𝜙 · inv(𝜋𝑆 )) over all permutations of 𝑆 is equal to
∏𝑘

𝑖=1 𝑍𝑖 (𝜙) [55], we then have

P [𝜋 (: 𝑘) = 𝑆] = exp
©­«−𝜙 · ©­«

∑
𝑥 𝑗 ∈𝑆

𝑗 − 𝑘 (𝑘 + 1)
2

ª®¬ª®¬ ·
∏𝑘

𝑖=1 𝑍𝑖 (𝜙)∏𝑘
𝑖=1 𝑍𝑚−𝑖+1 (𝜙)

. □

C.2.2 Itemwise Comparison.

Lemma 12 (Proposition 3.8 of [16]). In a Mallows distribution 𝜋 ∼ D(𝜋∗, 𝜙), for any two distinct items 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑀 with 𝑖 < 𝑗 and 𝑘 = 𝑗 − 𝑖 +1,
the probability that 𝑥𝑖 is before 𝑥 𝑗 in 𝜋 is given by

Pr
[
𝑥𝑖 ≻𝜋 𝑥 𝑗

]
=

𝑘

1 − exp(−𝜙 · 𝑘) −
𝑘 − 1

1 − exp(−𝜙 · (𝑘 − 1)) .

Lemma 13 (Monotonicity of Pairwise Comparison). In a Mallows distribution 𝜋 ∼ D(𝜋∗, 𝜙), the probability of the pairwise comparison
between items 𝑥𝑖 and 𝑥 𝑗 with 𝑗 > 𝑖 increases with the index gap 𝑗 − 𝑖 . Particularly, P[𝑥𝑖 ≻𝜋 𝑥 𝑗 ] ≤ P[𝑥𝑖′ ≻𝜋 𝑥 𝑗 ′ ] if 𝑗 ′ − 𝑖′ ≥ 𝑗 − 𝑖 .

PRoof. We first prove it holds for the case of 𝑖 = 𝑖′. Hence, by assumption, 𝑗 ′ ≥ 𝑗 . For any ranking 𝜋 that ranks 𝑥𝑖 before 𝑥 𝑗 while
ranking 𝑥𝑖 after 𝑥 𝑗 ′ , we map it to a new one by swapping 𝑥 𝑗 and 𝑥 𝑗 ′ . By [34, Lemma 1], the number of inversions reduces by at least one,
and the probability of the new ranking is weakly larger than the original one. Therefore, it implies that the probability of 𝑥𝑖 being before 𝑥 𝑗
is smaller. By Lemma 12, the probability of pairwise comparison only depends on the difference of the two indices. Therefore, the lemma
holds for every 𝑖, 𝑗, 𝑖′, and 𝑗 ′. □

Lemma 14. For any 𝑛 and a constant 𝜖 < 1/2, there exists 𝜙 > 0 and𝑚 such that in Mallows distribution 𝜋 ∼ D(𝜋∗, 𝜙) with ground-truth
ranking 𝜋∗ = (𝑥1, . . . , 𝑥𝑚), for any two items 𝑥𝑖 and 𝑥 𝑗 , the following holds

P[𝑥𝑖 ≻𝜋 𝑥 𝑗 ] ∈
{
(0, 12 + 𝜖], if 𝑗 − 𝑖 + 1 ≤ 𝑛

[1 − 𝜖, 1), if 𝑗 − 𝑖 + 1 ≥ 𝑚 − 𝑛

PRoof. When 𝑗 −𝑖 +1 ≤ 𝑛, we first show an upper bound of the probability of 𝑥𝑖 being before 𝑥 𝑗 . Similarly, we define a bijective mapping
from the rankings where 𝑥𝑖 is before 𝑥 𝑗 to rankings where 𝑥𝑖 is after 𝑥𝑖 by swapping the location of 𝑥𝑖 and 𝑥 𝑗 . Since 𝑗 −1+1 ≤ 𝑛, the number
of inversions will increase by at most 𝑛. Hence, P[𝑥𝑖 ≻𝜋 𝑥 𝑗 ] ≤ exp(𝜙 ·𝑛), which immediately implies that, P[𝑥𝑖 ≻𝜋 𝑥 𝑗 ] ≤ exp(𝜙 ·𝑛)

1+exp(𝜙 ·𝑛) . Thus,
by direct calculation, it suffices to set 𝜙 = 1

𝑛 · log(
1+2𝜖
1−2𝜖 ) for the first condition.

Next, we find the number 𝑚 satisfying the second condition. By Lemma 13, for any fixed 𝜙 , the probability increases as 𝑘 . Hence, it
suffices to show it holds for𝑚 − 𝑛. Recall that, by Lemma 12,

P[𝑥𝑖 ≻𝜋 𝑥 𝑗 ] =
𝑘

1 − exp(−𝜙 · 𝑘) −
𝑘 − 1

1 − exp(−𝜙 · (𝑘 − 1)) .

Direct calculation gives that

P[𝑥𝑖 ≻𝜋 𝑥 𝑗 ] =
1

1 − exp(−𝜙 · (𝑘 − 1)) ·
(
1 − exp(−𝜙 · (𝑘 − 1)) − exp(−𝜙 · 𝑘)

1 − exp(−𝜙 · 𝑘) 𝑘

)
≥ 1

1 − exp(−𝜙 · (𝑘 − 1)) · (1 − exp(−𝜙 · (𝑘 − 1)) · 𝑘) .

To make sure the probability is greater than 1 − 𝜖 , it suffices to set exp(−𝜙 · (𝑘 − 1)) ≤ 𝜖/𝑘 , which can be satisfied when 𝑘/log𝑘 ≥ 1/𝜙 . As
log𝑘 ≤

√
𝑘 , it suffices to set𝑚 − 𝑛 ≥ 𝑘 ≥ 1/𝜙2. Therefore, we set 𝜙 = 1

𝑛 · log(
1+2𝜖
1−2𝜖 ) and𝑚 = 1/𝜙2 + 𝑛. □
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Lemma 15. In a mallows distribution 𝜋 ∼ D(𝜋∗, 𝜙), given a subset of items S = {𝑥𝑖 (1) , . . . , 𝑥𝑖 (𝑘 ) } with 𝑖 (1) < . . . < 𝑖 (𝑘), the probability of
𝑥𝑖 (1) being placed before all other items of S in 𝜋 satisfies

P
𝜋∼D(𝜋∗,𝜙 )

[
𝑥𝑖 (1) ≻𝜋 S

]
≥ 1

𝑍𝑘 (𝜙)
.

PRoof. We partition the set of permutations into 𝑘 sets based on the relative position of 𝑥𝑖 (1) . Let𝔖𝑡 be the set of permutations where
𝑥𝑖 (1) is placed at the 𝑡-th relative position among all items of S. For any 𝜋 ∈ 𝔖𝑡+1 with 𝑡 ≤ 𝑘 − 1, we map it to a permutation 𝜋 ∈ 𝔖𝑡

by swapping 𝑥𝑖 (1) and the item that is placed at the 𝑡-th position among all items of S. It is a valid swapping with respect to 𝜋 and 𝜋∗

by definition. By [34, Lemma 1], the probability of 𝜋 ′ is at least exp(𝜙) times the probability of 𝜋 . By summing the inequality up over all
permutations of𝔖𝑡+1, we can conclude that P[𝜋 ∈ 𝔖𝑡 ] ≥ exp(𝜙) · P[𝜋 ∈ 𝔖𝑡+1]. Hence, by multiplying these inequalities, we can have

P[𝜋 ∈ 𝔖1] ≥ exp(𝜙 · (𝑡 − 1)) · P[𝜋 ∈ 𝔖𝑡 ] .

Therefore, by summing it over all 𝑡 , we have

P[𝜋 ∈ 𝔖1] ≥
1∑𝑘

𝑡=1 exp(𝜙 · (𝑡 − 1))
·

𝑘∑
𝑡=1

P[𝜋 ∈ 𝔖𝑡 ] =
1

𝑍𝑘 (𝜙)
. □

Lemma 16. In a mallows distribution 𝜋 ∼ D(𝜋∗, 𝜙) with 𝜋∗ = (𝑥1, . . . , 𝑥𝑚), given a subset of items S = {𝑥𝑖 (1) , . . . , 𝑥𝑖 (𝑘 ) } with 𝑖 (1) < . . . <
𝑖 (𝑘), for any 𝑠 such that 1 ≤ 𝑠 ≤ 𝑘 , the probability of one of 𝑥𝑖 (1) , . . . , 𝑥𝑖 (𝑠 ) being the first among all items of S is at least

𝑠∑
𝑗=1

P
[
𝑥𝑖 ( 𝑗 ) ≻𝜋 S

]
≥ 𝑍𝑠 (𝜙)

𝑍𝑘 (𝜙)
.

PRoof. Similar to the above proof, let 𝔖𝑗 be the set of permutations where 𝑥𝑖 ( 𝑗 ) is the first one among all the items in S. Then the
left-hand side can be rewritten as

∑𝑠
𝑗=1 P[𝜋 ∈ 𝔖𝑗 ]. Denote each term by 𝑓 ( 𝑗) for 𝑗 = 1, . . . , 𝑠 . Using the argument of valid-swapping-based

mapping, we have 𝑓 (𝑖) ≥ exp(𝜙) · 𝑓 (𝑖 + 1). Meanwhile, as
∑𝑘
𝑖=1 𝑓 (𝑖) = 1, we have

𝑠∑
𝑗=1

𝑓 ( 𝑗) − 𝑍𝑠 (𝜙)
𝑍𝑘 (𝜙)

=
𝑠∑
𝑗=1

𝑓 ( 𝑗) − 𝑍𝑠 (𝜙)
𝑍𝑘 (𝜙)

·
𝑘∑
𝑗=1

𝑓 ( 𝑗)

∝
𝑠∑
𝑗=1

𝑓 ( 𝑗) · (𝑍𝑘 (𝜙) − 𝑍𝑠 (𝜙)) −
𝑘∑

𝑗=𝑠+1
𝑓 ( 𝑗) · 𝑍𝑠 (𝜙) (By multiplying 𝑍𝑘 (𝜙))

=
𝑠∑
𝑗=1

𝑓 ( 𝑗) · exp(−𝜙 · 𝑠) · 𝑍𝑘−𝑠 (𝜙) −
𝑘∑

𝑗=𝑠+1
𝑓 ( 𝑗) · 𝑍𝑠 (𝜙) (𝑍𝑘 (𝜙) − 𝑍𝑠 (𝜙) =

𝑍𝑘−𝑠 (𝜙 )
exp(𝜙 ·𝑠 ) )

Since 𝑍𝑘−𝑠 (𝜙) can be unfolded as 𝑍𝑘−𝑠 (𝜙) =
∑𝑘−𝑠
𝑡=1 exp(−𝜙 (𝑡 − 1)), by changing the order of summation, we can obtain that

𝑠∑
𝑗=1

𝑓 ( 𝑗) − 𝑍𝑠 (𝜙)
𝑍𝑘 (𝜙)

∝
𝑘−𝑠∑
𝑡=1

exp(−𝜙 · (𝑡 − 1)) ·
𝑠∑
𝑗=1

𝑓 ( 𝑗) · exp(−𝜙 · 𝑠) −
𝑘∑
𝑗=1

𝑓 ( 𝑗) · 𝑍𝑠 (𝜙)

=
𝑘∑

𝑡=𝑠+1
exp(−𝜙 · (𝑡 − 1)) ·

𝑠∑
𝑗=1

𝑓 ( 𝑗) −
𝑘∑

𝑗=𝑠+1
𝑓 ( 𝑗) · 𝑍𝑠 (𝜙)

=
𝑘∑

𝑡=𝑠+1

𝑠∑
𝑗=1

(𝑓 ( 𝑗) · exp(−𝜙 · (𝑡 − 1))) −
𝑘∑

𝑗=𝑠+1
𝑓 ( 𝑗) · 𝑍𝑠 (𝜙)

≥
𝑘∑

𝑡=𝑠+1

𝑠∑
𝑗=1

𝑓 (𝑡) · exp(−𝜙 · ( 𝑗 − 1)) −
𝑘∑

𝑗=𝑠+1
𝑓 ( 𝑗) · 𝑍𝑠 (𝜙) (𝑓 (𝑖) ≥ 𝑓 (𝑖 + 1))

=
𝑘∑

𝑡=𝑠+1
𝑓 (𝑡) · 𝑍𝑠 (𝜙) −

𝑘∑
𝑗=𝑠+1

𝑓 ( 𝑗) · 𝑍𝑠 (𝜙) = 0,

which concludes the proof. □
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D OMITTED DETAILS OF SECTION 4
D.1 Omitted Proofs of Theorem 1
Lemma 1. For any item that is not 𝑖 , the probability of picking that item is higher with the misaligned algorithm (and the probability of picking
item 𝑖 is lower). That is, for any 𝑟 ∈ [𝑚] with 𝑟 ≠ 𝑖 , P[𝑥1𝐶 = 𝑥𝑟 ] ≤ P[𝑥2𝐶 = 𝑥𝑟 ], and P[𝑥1𝐶 = 𝑥𝑖 ] ≥ P[𝑥2𝐶 = 𝑥𝑖 ]6.

PRoof. Let 𝜋∗2 be the ground-truth ranking of 𝐴2, which swaps the ranking 𝑥𝑖 and 𝑥 𝑗 compared to 𝐴1’s ground-truth ranking 𝜋∗1. Let
D1

𝑎 and D2
𝑎 be the distributions with ground-truth ranking 𝜋∗1 and 𝜋∗2 respectively. In addition, denote by 𝑥1𝐶 and 𝑥2𝐶 the two items picked

by the human working with Algorithm 1 and Algorithm 2, respectively.

Case I: Picking item other than 𝑥𝑖 and 𝑥 𝑗 . We first consider the change in the probability of picking some item other than 𝑥𝑖 or 𝑥 𝑗 . Without
loss of generality, denote by 𝑥𝑟 the considered item. Denote by 𝑥1𝐶 and 𝑥2𝐶 , respectively, the items picked by the human when collaborating
with algorithm 1 and algorithm 2. By the way of human-algorithm interaction, 𝑥𝑟 is chosen by a human only if it is included in the presented
list S (i.e., 𝜋 [: 𝑘] = S) and the human ranks it before any other item of S (i.e., 𝑥𝑟 ≻𝜌 S). Thus, the probabilities of 𝑥𝑟 being picked by the
human are given by

P[𝑥1𝐶 = 𝑥𝑟 ] =
∑
S:𝑥𝑟 ∈S

P [𝜋1 [: 𝑘] = S] × P
[
𝑥𝑟 ≻𝜌 S

]
, (Prob 1)

P[𝑥2𝐶 = 𝑥𝑟 ] =
∑
S:𝑥𝑟 ∈S

P [𝜋2 [: 𝑘] = S] × P
[
𝑥𝑟 ≻𝜌 S

]
, (Prob 2)

where 𝜋1 ∼ D1
𝑎 , 𝜋2 ∼ D2

𝑎 , and 𝜌 ∼ Dℎ .
Next, we conduct a term-by-term comparison of Prob 1 and Prob 2 with respect to each S. We start with two simple cases: S contains

both 𝑥𝑖 and 𝑥 𝑗 ; S contains neither 𝑥𝑖 nor 𝑥 𝑗 . For either of the two cases, consider the permutation 𝜋1 whose first 𝑘 items are S. Swap 𝑥𝑖 and
𝑥 𝑗 in 𝜋1 and get another permutation 𝜋2, which shares the same set of the first 𝑘 items. As the two distributions only differ in the relative
rankings of 𝑥𝑖 and 𝑥 𝑗 in their ground-truth rankings, the probability of 𝜋1 occurring in D1

𝑎 is the same as 𝜋2 occurring in D2
𝑎 . Therefore,

the two summations are equal in these terms.
Next, we compare the two probabilities by pairing the remaining summation terms corresponding to S that contains only one of 𝑥𝑖 and

𝑥 𝑗 . Denote by S𝑖 a set S containing 𝑥𝑖 without 𝑥 𝑗 . We pair S𝑖 with another subset by substituting item 𝑥𝑖 with 𝑥 𝑗 . Denote the new set by
S 𝑗 . Next, we show that the following inequality holds for every constructed pair (S𝑖 ,S 𝑗 ),∑

S∈(S𝑖 ,S 𝑗 )
P [𝜋1 [: 𝑘] = S] P

𝜌∼Dℎ

[
𝑥𝑟 ≻𝜌 S

]
≤

∑
S∈(S𝑖 ,S 𝑗 )

P [𝜋2 [: 𝑘] = S] P
𝜌∼Dℎ

[
𝑥𝑟 ≻𝜌 S

]
. (InEq (1))

As 𝑥𝑖 is better than 𝑥 𝑗 in human’s ground-truth ranking 𝜌∗, it is easier for the human to rank 𝑥𝑟 before 𝑥 𝑗 , as described in Lemma 10.
Formally,

P[𝑥𝑟 ≻𝜌 S 𝑗 ] ≥ P[𝑥𝑟 ≻𝜌 S𝑖 ] .
Also, since the two distributions D1

𝑎 and D2
𝑎 are isomorphic, differing only by a swap between 𝑥𝑖 and 𝑥 𝑗 in ground-truth rankings, by

relabeling the two items, we have
P

𝜋1∼D1
𝑎

[
𝜋1 [: 𝑘] = S𝑖

]
= P

𝜋2∼D2
𝑎

[
𝜋2 [: 𝑘] = S 𝑗 ] ,

P
𝜋1∼D1

𝑎

[
𝜋1 [: 𝑘] = S 𝑗 ] = P

𝜋2∼D2
𝑎

[
𝜋2 [: 𝑘] = S𝑖

]
.

Meanwhile, by Lemma 9, as 𝑥𝑖 is placed before 𝑥 𝑗 in 𝜋∗1, we have

P
𝜋1∼D1

𝑎

[
𝜋1 [: 𝑘] = S𝑖

]
> P

𝜋1∼D1
𝑎

[
𝜋1 [: 𝑘] = S 𝑗 ] .

By applying the rearrangement inequality, then InEq (1) holds.

Case II: Picking 𝑥𝑖 or 𝑥 𝑗 . We next consider the change of the probabilities of picking 𝑥𝑖 or 𝑥 𝑗 . First, we show that the probability of picking
𝑥𝑖 decreases after the algorithm places 𝑥𝑖 after 𝑥 𝑗 . Similarly,

P[𝑥1𝐶 = 𝑥𝑖 ] =
∑
S:𝑥𝑖 ∈S

P [𝜋1 [: 𝑘] = S] · P
𝜌∼Dℎ

[
𝑥𝑖 ≻𝜌 S

]
,

P[𝑥2𝐶 = 𝑥𝑖 ] =
∑
S:𝑥𝑖 ∈S

P [𝜋2 [: 𝑘] = S] · P
𝜌∼Dℎ

[
𝑥𝑖 ≻𝜌 S

]
.

Next, we still compare the two probabilities by term. Consider the terms where the set S contains both 𝑥𝑖 and 𝑥 𝑗 . The first terms P[𝜋1 [:
𝑘] = S] and P[𝜋2 [: 𝑘] = S] are the same by identical logic used above. Next, consider the other terms where S does not contain 𝑥 𝑗 . Let
6Note that the two inequalities become tight only when the two items are completely indistinguishable to the human, i.e., swapping them does not change the probability of any
ranking under the human’s distribution. The following content considers the case where this condition does not hold.
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S′ = S \ {𝑥𝑖 } ∪ {𝑥 𝑗 }. By a similar reason, P[𝜋2 [: 𝑘] = S] = P[𝜋1 [: 𝑘] = S′]. In addition, as 𝑥𝑖 is placed before 𝑥 𝑗 in 𝜋∗1, then by Lemma 9,
P[𝜋1 [: 𝑘] = S] > P[𝜋 [: 𝑘] = S′], which further concludes the first inequality. The remaining comparison of the probabilities that the
human selects 𝑥 𝑗 under the two algorithms follows by symmetry. □

Theorem 1. The human gains higher utility with the misaligned algorithm when 𝑥𝑖 and 𝑥 𝑗 are least valued, but lower utility when 𝑥𝑖 is top
valued.

PRoof. Consider the change in the probability of the human picking each item. By the above lemma, after swapping 𝑥𝑖 to a later position
in algorithm’s ground-truth, only the probability of the human picking item 𝑥𝑖 decreases, while the probability of picking any other item
increases. Therefore, if both 𝑥𝑖 and 𝑥 𝑗 are zero-valued to the human, then such a swap leads to an increase in the probability of picking any
valuable item, which in turn increases human’s utility. For the second bullet, if 𝑥𝑖 is the most valuable item to the human, then the swap
causes a loss in picking the most valuable item, which further leads to a decrease in human’s utility. □

Theorem 2 (Best/worst strategy for top item recovery). In the top item recovery setting, the algorithm’s ground-truth ranking 𝜋∗ that
maximizes human’s expected utility is 𝜋∗ = (𝑥1, 𝑥𝑚, . . . , 𝑥2) while the one minimizing human’s expected utility is 𝜋∗ = (𝑥2, . . . , 𝑥𝑚, 𝑥1).

PRoof. By the first bullet of Theorem 1, swapping any pair of zero-valued items will increase the human’s utility. Therefore, for the
algorithm that maximizes human’s utility, all items other than 𝑥1 should be ranked in reverse order. In addition, by the second bullet,
ranking human’s top item 𝑥1 in any place other than the first position will decrease human’s utility. Thus, the optimal algorithm should
rank 𝑥1 first. Using a symmetric argument, we can also prove that the ranking (𝑥2, 𝑥3, . . . , 𝑥𝑚, 𝑥1) yields the least benefit.

Notably, this result extends to the setting where the human has multiple top-valued items. Suppose the human assigns a positive value
only to her top 𝑑 items, which are equally valued. In this case, the algorithm’s arrangement 𝜋∗ that maximizes the human’s expected utility
places the top 𝑑 items first, followed by the remaining items in reverse order; that is, 𝜋∗ = (𝑥1, . . . , 𝑥𝑑 , 𝑥𝑚, . . . , 𝑥𝑑+1). □

D.2 Extensions of Theorem 1
Lemma 2. Collaboration with a misaligned algorithm is harmful for the human under the Mallows model with accuracy parameter 𝜙ℎ if
𝑣1 − 𝑣𝑖 ≤ exp(−𝜙ℎΔ)

1−exp(−𝜙ℎΔ) Δ where Δ = 𝑗 − 𝑖 and 𝑘 = 2.

Lemma 7. Collaboration with a misaligned algorithm is harmful for the human under the Plackett-Luce model, when 𝑣0 − 𝑣 𝑗 ≤ 1.27𝛽 .

PRoof. According to the computation of Lemma 1, for every 𝑟 ≠ 𝑖, 𝑗 , we have

P[𝑥2𝐶 = 𝑥𝑟 ] − P[𝑥1𝐶 = 𝑥𝑟 ] =
(
P[𝜋1 [: 2] = {𝑥𝑖 , 𝑥𝑟 }] − P[𝜋1 [: 2] = {𝑥 𝑗 , 𝑥𝑟 }]

)
·
(
P[𝑥𝑟 ≻𝜌 𝑥 𝑗 ] − P[𝑥𝑟 ≻𝜌 𝑥𝑖 ]

)
≥ 0

Meanwhile, we have

P[𝑥2𝐶 = 𝑥 𝑗 ] − P[𝑥1𝐶 = 𝑥 𝑗 ] =
∑
𝑟≠𝑖, 𝑗

(
P[𝜋1 [: 2] = {𝑥𝑖 , 𝑥𝑟 }] − P[𝜋1 [: 2] = {𝑥 𝑗 , 𝑥𝑟 }]

)
· P[𝑥 𝑗 ≻𝜌 𝑥𝑟 ] ≥ 0

P[𝑥2𝐶 = 𝑥𝑖 ] − P[𝑥1𝐶 = 𝑥𝑖 ] =
∑
𝑟≠𝑖, 𝑗

(
P[𝜋1 [: 2] = {𝑥𝑖 , 𝑥𝑟 }] − P[𝜋1 [: 2] = {𝑥 𝑗 , 𝑥𝑟 }]

)
· P[𝑥𝑖 ≻𝜌 𝑥𝑟 ] ≤ 0

Let𝜓 (𝑖, 𝑗, 𝑟 ) be𝜓 (𝑖, 𝑗, 𝑟 ) = P[𝜋1 [: 2] = {𝑥𝑖 , 𝑥𝑟 }] − P[𝜋1 [: 2] = {𝑥 𝑗 , 𝑥𝑟 }]. Therefore, the expected change in human’s utility is given by∑
𝑟≠𝑖, 𝑗

𝑣𝑟 · (P[𝑥2𝐶 = 𝑥𝑟 ] − P[𝑥1𝐶 = 𝑥𝑟 ]) + 𝑣 𝑗 · (P[𝑥2𝐶 = 𝑥 𝑗 ] − P[𝑥1𝐶 = 𝑥 𝑗 ]) + 𝑣𝑖 · (P[𝑥2𝐶 = 𝑥𝑖 ] − P[𝑥1𝐶 = 𝑥𝑖 ])

=
∑
𝑟≠𝑖, 𝑗

𝑣𝑟 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
(
P[𝑥𝑟 ≻𝜌 𝑥 𝑗 ] − P[𝑥𝑟 ≻𝜌 𝑥𝑖 ]

)
+

∑
𝑟≠𝑖, 𝑗

𝑣 𝑗 ·𝜓 (𝑖, 𝑗, 𝑟 ) · P[𝑥 𝑗 ≻𝜌 𝑥𝑟 ] −
∑
𝑟≠𝑖, 𝑗

𝑣𝑖 ·𝜓 (𝑖, 𝑗, 𝑟 ) · P[𝑥𝑖 ≻𝜌 𝑥𝑟 ]

=
∑
𝑟≠𝑖, 𝑗

𝑣𝑟 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
(
P[𝑥𝑖 ≻𝜌 𝑥𝑟 ] − P[𝑥 𝑗 ≻𝜌 𝑥𝑟 ]

)
+

∑
𝑟≠𝑖, 𝑗

𝑣 𝑗 ·𝜓 (𝑖, 𝑗, 𝑟 ) · P[𝑥 𝑗 ≻𝜌 𝑥𝑟 ] −
∑
𝑟≠𝑖, 𝑗

𝑣𝑖 ·𝜓 (𝑖, 𝑗, 𝑟 ) · P[𝑥𝑖 ≻𝜌 𝑥𝑟 ]

=
∑
𝑟≠𝑖, 𝑗

𝜓 (𝑖, 𝑗, 𝑟 ) ·
(
(𝑣𝑟 − 𝑣𝑖 ) · (P[𝑥𝑖 ≻𝜌 𝑥𝑟 ]) − (𝑣𝑟 − 𝑣 𝑗 ) · (P[𝑥 𝑗 ≻𝜌 𝑥𝑟 ])

)
Next, we show that the above summation is always negative when the preconditions of the two models are satisfied. Notice that, when

𝑖 ≤ 𝑟 ≤ 𝑗 , by assumption, we have 𝑣𝑖 ≥ 𝑣𝑟 ≥ 𝑣 𝑗 . Hence, the inner term is always negative (as 𝑣𝑖 ≠ 𝑣 𝑗 ). In addition, when 𝑟 ≥ 𝑗 , by Lemma 10,
we know P[𝑥𝑖 ≻𝜌 𝑥𝑟 ] ≥ P[𝑥 𝑗 ≻𝜌 𝑥𝑟 ]. Meanwhile, we can observe that |𝑥𝑟 − 𝑥𝑖 | ≥

��𝑥𝑟 − 𝑥 𝑗 ��. Hence, the inner term is still negative. It
suffices to prove that every term with 𝑟 < 𝑖 is negative.
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(a) Plackett-Luce model. Let 𝛿 = 𝑣𝑟 − 𝑣𝑖 and Δ = 𝑣𝑖 − 𝑣 𝑗 . By the definition of the Plackett-Luce model, the inner term can be rewritten as

(𝑣𝑟 − 𝑣𝑖 ) ·
exp(𝑣𝑖/𝛽)

exp(𝑣𝑟 /𝛽) + exp(𝑣𝑖/𝛽)
− (𝑣𝑟 − 𝑣 𝑗 ) ·

exp(𝑣 𝑗/𝛽)
exp(𝑣𝑟 /𝛽) + exp(𝑣 𝑗/𝛽)

=
𝛿

exp(𝛿/𝛽) + 1 −
𝛿 + Δ

exp((𝛿 + Δ)/𝛽) + 1 .

Let function 𝑓 (𝑥) = 𝑥
exp(𝑥/𝛽 )+1 . Since 𝑓 ′ (𝑥) = (1−𝑥/𝛽 ) exp(𝑥/𝛽 )+1

(exp(𝑥/𝛽 )+1)2 , then 𝑓 (𝑥) is increasing when 𝑥 ≤ 1.278. Therefore, the above term is
always negative since 𝛿 + Δ = 𝑣𝑟 − 𝑣 𝑗 ≤ 𝑣0 − 𝑣 𝑗 ≤ 1.27𝛽 .

(b) Mallows model. Since swapping item 𝑥𝑖 and 𝑥 𝑗 at most increases the number of inversion by | 𝑗 − 𝑖 |, then P[𝑥 𝑗 ≻𝜌 𝑥𝑟 ] ≥ exp(−𝜙ℎ ·
(𝑖 − 𝑗)) · P[𝑥𝑖 ≻𝜌 𝑥𝑟 ]. Since 𝑣𝑟 ≤ 𝑣0 ≤ exp(𝜙ℎ · (𝑖− 𝑗 ) )

exp(𝜙ℎ · (𝑖− 𝑗 )−1𝑣𝑖 −
1

exp(𝜙ℎ · (𝑖− 𝑗 ) )−1𝑣 𝑗 , we have 𝑣𝑟 − 𝑣𝑖 ≤ exp(−𝜙ℎ · (𝑖 − 𝑗)) · (𝑣𝑟 − 𝑣 𝑗 ), which means
that the inner term is always non-positive and concludes the proof. □

Lemma 3. Collaboration with a misaligned algorithm is helpful for the human under the Mallows model when some 𝑖′ ∈ [𝑖 − 1] satisfies

𝑣𝑖′

𝑣𝑖
≥

∑
𝑟≠𝑖, 𝑗 𝜓 (𝑖, 𝑗, 𝑟 )∑𝑖′

𝑟=1𝜓 (𝑖, 𝑗, 𝑟 ) exp(−𝜙ℎ · ( 𝑗 − 𝑟 + 1))
1

1 − exp(−𝜙ℎ · Δ)
,

where Δ = 𝑗 − 𝑖 + 1 and𝜓 (𝑖, 𝑗, 𝑟 ) = P[𝜋1 [: 2] = {𝑥𝑖 , 𝑥𝑟 }] − P[𝜋1 [: 2] = {𝑥 𝑗 , 𝑥𝑟 }] is always nonnegative for any 𝑟 ≠ 𝑖, 𝑗 .

Lemma 8. Collaboration with a misaligned algorithm is helpful under the Plackett-Luce model for the human when some 𝑖′ ∈ [𝑖 −1] satisfies

𝑣𝑖′

𝑣𝑖
≥

∑
𝑟≠𝑖, 𝑗

𝜓 (𝑖, 𝑗,𝑟 )
exp( (𝑣𝑟 −𝑣𝑖 )/𝛽 )+1∑𝑖′

𝑟=1
𝜓 (𝑖, 𝑗,𝑟 )

exp( (𝑣𝑟 −𝑣𝑖 )/𝛽 )+1
· 2
1 − exp (−Δ/𝛽) ,

where Δ = 𝑣𝑖 − 𝑣 𝑗 and𝜓 (𝑖, 𝑗, 𝑟 ) = P[𝜋1 [: 2] = {𝑥𝑖 , 𝑥𝑟 }] − P[𝜋1 [: 2] = {𝑥 𝑗 , 𝑥𝑟 }] ≥ 0.

PRoof. Let 𝑖′ be the index satisfying the given condition in each of the two models, respectively. Then the expected change is at least∑
𝑟≠𝑖, 𝑗

𝑣𝑟 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
(
P[𝑥𝑟 ≻𝜌 𝑥 𝑗 ] − P[𝑥𝑟 ≻𝜌 𝑥𝑖 ]

)
+

∑
𝑟≠𝑖, 𝑗

𝑣 𝑗 ·𝜓 (𝑖, 𝑗, 𝑟 ) · P[𝑥 𝑗 ≻𝜌 𝑥𝑟 ] −
∑
𝑟≠𝑖, 𝑗

𝑣𝑖 ·𝜓 (𝑖, 𝑗, 𝑟 ) · P[𝑥𝑖 ≻𝜌 𝑥𝑟 ]

>
𝑖′∑
𝑟=1

𝑣𝑟 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
(
P[𝑥𝑟 ≻𝜌 𝑥 𝑗 ] − P[𝑥𝑟 ≻𝜌 𝑥𝑖 ]

)
−

∑
𝑟≠𝑖, 𝑗

𝑣𝑖 ·𝜓 (𝑖, 𝑗, 𝑟 ) · P[𝑥𝑖 ≻𝜌 𝑥𝑟 ]

(a) Plackett-Luce model. When the human’s ranking satisfies the Plackett-Luce model, then the above value is at least
𝑖′∑
𝑟=1

𝑣𝑟 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
(

exp(𝑣𝑟 /𝛽)
exp(𝑣 𝑗/𝛽) + exp(𝑣𝑟 /𝛽)

− exp(𝑣𝑟 /𝛽)
exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽)

)
−

∑
𝑟≠𝑖, 𝑗

𝑣𝑖 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
exp(𝑣𝑖/𝛽)

exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽)

≥
𝑖′∑
𝑟=1

𝑣𝑟 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
exp(𝑣𝑟 /𝛽) · (exp(𝑣𝑖/𝛽) − exp(𝑣 𝑗/𝛽))

(exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽)) (exp(𝑣 𝑗/𝛽) + exp(𝑣𝑟 /𝛽))
−

∑
𝑟≠𝑖, 𝑗

𝑣𝑖 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
exp(𝑣𝑖/𝛽)

exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽)

≥
𝑖′∑
𝑟=1

𝑣𝑟 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
exp(𝑣𝑟 /𝛽) · (exp(𝑣𝑖/𝛽) − exp(𝑣 𝑗/𝛽))

(exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽))2
−

∑
𝑟≠𝑖, 𝑗

𝑣𝑖 ·𝜓 (𝑖, 𝑗, 𝑟 ) ·
exp(𝑣𝑖/𝛽)

exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽)

≥𝑣𝑖′ ·
𝑖′∑
𝑟=1

𝜓 (𝑖, 𝑗, 𝑟 ) ·
exp(𝑣𝑟 /𝛽) · (exp(𝑣𝑖/𝛽) − exp(𝑣 𝑗/𝛽))

(exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽))2
− 𝑣𝑖 ·

∑
𝑟≠𝑖, 𝑗

𝜓 (𝑖, 𝑗, 𝑟 ) · exp(𝑣𝑖/𝛽)
exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽)

≥𝑣𝑖′ ·
𝑖′∑
𝑟=1

𝜓 (𝑖, 𝑗, 𝑟 ) ·
exp(𝑣𝑖/𝛽) − exp(𝑣 𝑗/𝛽)

2(exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽))
− 𝑣𝑖 ·

∑
𝑟≠𝑖, 𝑗

𝜓 (𝑖, 𝑗, 𝑟 ) · exp(𝑣𝑖/𝛽)
exp(𝑣𝑖/𝛽) + exp(𝑣𝑟 /𝛽)

≥0 .

(b) Mallows model. When the human’s ranking satisfies Mallows model, we can notice that for any 𝑟 ≤ 𝑖′,

P[𝑥𝑟 ≻𝜌 𝑥 𝑗 ] − P[𝑥𝑟 ≻𝜌 𝑥𝑖 ] ≥
1

1 − exp(−𝜙ℎ · (𝑟 − 𝑗 + 1)) −
1

1 − exp(−𝜙ℎ · (𝑟 − 𝑖))

≥ exp(−𝜙ℎ · (𝑟 − 𝑗 + 1)) − exp(−𝜙ℎ · (𝑟 − 𝑖))
(1 − exp(−𝜙ℎ · (𝑟 − 𝑖))) · (1 − exp(−𝜙ℎ · (𝑟 − 𝑗 + 1)))

≥ exp(−𝜙ℎ · (𝑟 − 𝑗 + 1)) · (1 − exp(−𝜙ℎ · (𝑖 − 𝑗 − 1))
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Therefore, the expected change is at least
𝑖′∑
𝑟=1

𝑣𝑟 ·𝜓 (𝑖, 𝑗, 𝑟 ) · exp(−𝜙ℎ · (𝑟 − 𝑗 + 1)) · (1 − exp(−𝜙ℎ · (𝑖 − 𝑗 − 1)) −
∑
𝑟≠𝑖, 𝑗

𝑣𝑖 ·𝜓 (𝑖, 𝑗, 𝑟 ) · P[𝑥𝑖 ≻𝜌 𝑥𝑟 ]

≥𝑣𝑖′ · (1 − exp(−𝜙ℎ · (𝑖 − 𝑗 − 1)) ·
𝑖′∑
𝑟=1

𝜓 (𝑖, 𝑗, 𝑟 ) · exp(−𝜙ℎ · (𝑟 − 𝑗 + 1)) − 𝑣𝑖
∑
𝑟≠𝑖, 𝑗

𝜓 (𝑖, 𝑗, 𝑟 )

≥0, (By assumption of 𝑣𝑖′ and 𝑣𝑖 )
which concludes the lemma. □

E OMITTED PROOFS IN SECTION 5
E.1 NP-Hardness of Welfare-Maximization
Theorem 3 (Computational hardness). The expected social welfare is maximized when the algorithm’s distribution is noiseless. However, it
remains NP-hard to find 𝜋∗ that maximizes the expected social welfare, even in the top-item recovery setting.

PRoof. As discussed, the optimal solution is noiseless. Next, we reduce from the Independent Set problem, where the input is a graph
instance 𝐺 = (𝑉 , 𝐸) with 𝑛 vertices and𝑚 edges, and an integer 𝑘 . The output is YES if the size of the maximum independent set of graph
𝐺 is at least 𝑘 and NO otherwise. We construct the human-algorithm collaboration instance in the following way.

Fix 𝜖 > 0 to be a sufficiently small constant such that (1 − 𝜖)𝑘−1 > 1 − 1/(2𝑘) and 𝜖 < 1/4. Construct𝑚 items 𝑥1, . . . , 𝑥𝑚 . Denote the 𝑛
vertices as 𝑣1, . . . , 𝑣𝑛 . For each 𝑖 ∈ [𝑛], we construct a ground-truth ranking 𝜌∗𝑖 as follows: place 𝑥𝑖 as the first item in 𝜌∗𝑖 . Iterate through
all the other vertices from 𝑣1 to 𝑣𝑛 and insert 𝑥 𝑗 after 𝑥𝑖 in 𝜌∗𝑖 if vertex 𝑣𝑖 is adjacent to vertex 𝑣 𝑗 in the input graph instance 𝐺 . Otherwise,
put 𝑣 𝑗 to the end of 𝜌∗𝑖 . For the remaining items 𝑥𝑛+1, . . . , 𝑥𝑚 , put them in the middle of the inserted items. Set 𝑝𝑖 = 1/𝑛 for each 𝑖 ∈ [𝑛]
and 𝑣1 = 1, 𝑣𝑖 = 0 for 𝑖 ≥ 2.

𝜌∗𝑗 : 𝑥 𝑗 ≻ 𝑥𝑖 ≻ 𝑥𝑛+1 ≻ · · · ≻ 𝑥𝑚 ≻ 𝑥 𝑗

𝜌∗𝑖 : 𝑥𝑖 ≻ 𝑥 𝑗 ≻ 𝑥𝑛+1 ≻ · · · ≻ 𝑥𝑚 ≻ 𝑥𝑘

𝜌∗
𝑘
: 𝑥𝑘 ≻ 𝑥𝑖 ≻ 𝑥𝑛+1 ≻ · · · ≻ 𝑥𝑚 ≻ 𝑥 𝑗

Constructed rankings 𝜌∗𝑖 , 𝜌
∗
𝑗 , and 𝜌∗

𝑘

𝑣𝑖

𝑣 𝑗

𝑣𝑘

Input graph 𝐺

We choose 𝜙ℎ and𝑚 so that in a Mallows model with𝑚 items and accuracy parameter 𝜙ℎ , given two items, the probability of ranking
before the other is at most than 1/2 + 𝜖 when the difference of the indices is smaller than 𝑛 and is larger than 1 − 𝜖 when it is larger than
𝑚 − 𝑛, which can be achieved by Lemma 14.

Next, we first show that if the input graph instance is a YES instance, then the optimal expected social welfare is at least (1 − 𝜖)𝑘 · 𝑘/𝑛.
Suppose the vertex index set of the maximum independent set of 𝐺 is 𝐼 with |𝐼 | ≥ 𝑘 . Put 𝑘 of the independent set as the first 𝑘 items of 𝜋∗
and the other𝑚 − 𝑘 items in an arbitrary order. Hence, specifying S = 𝜋∗ [: 𝑘], for every human 𝑖 ∈ 𝐼 , the probability of picking her best
item is at least

P[𝑥𝑖𝐶 = 𝑥𝑖 | S] = P[𝑥𝑖 ≻𝜌𝑖 S] = P
[
∧𝑗∈𝐼 (𝑥𝑖 ≻𝜌𝑖 𝑥 𝑗 )

]
≥

∏
𝑗∈𝐼

P
[
𝑥𝑖 ≻𝜌𝑖 𝑥 𝑗

]
≥ (1 − 𝜖)𝑘−1 .

Therefore, the expected utility of the human with ground-truth 𝜌∗𝑖 , E[𝑢 (𝑥 𝐽 | 𝜌
∗
𝑖 )] is at least (1 − 𝜖)

𝑘−1. As the human has a probability of
𝑝𝑖 = 1/𝑛 of having ground-truth 𝜌∗𝑖 for every 𝑖 ∈ 𝐼 , the expected social welfare is at least (1 − 𝜖)𝑘−1 · 𝑘/𝑛.

Next, we consider when the input instance is NO. Denote the 𝑘 items of 𝜋∗ by S. As the size of S is 𝑘 , there are 𝑛 − 𝑘 humans whose
best item is not picked. Hence, their utilities have a probability of at least (1 − 𝜖) being 0. In addition, as the input instance is NO instance,
consider the vertices corresponding to S. There must be two adjacent vertices included at the same time. Hence, there will be two humans
(say 𝑖, 𝑗 ) whose best item is within the top 𝑛 items of the other one’s ground-truth ranking. By the assumption of 𝜙ℎ , the two humans only
have the probability of no more than 1/2 + 𝜖 to pick their best item. Therefore, the expected social welfare is at most

1
𝑛
·
(
E[𝑢𝑖 (𝑥𝑖𝐶 )] + E[𝑢 𝑗 (𝑥

𝑗
𝐶 )] +

∑
𝑡 ∈𝐼\{𝑖, 𝑗 }

E[𝑢𝑡 (𝑥𝑡𝐶 )] +
∑
𝑡∉𝐼

E[𝑢𝑡 (𝑥𝑡𝐶 )]
)

≤ 1
𝑛
·
(
2 ·

( 1
2
+ 𝜖

)
+ (𝑘 − 2) · 1

)
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Algorithm 1: Dynamic programming for choice probability without prior knowledge
1 Function ChoiceProb(S, 𝑥𝑖 ):

Input: a subset S of items [𝑚];
Output: Probability of item 𝑥𝑖 being the first among all items in S;

2 for 𝑡 = 1, . . . ,𝑚 do
3 for each 1 ≤ 𝑖 ≤ 𝑘 − 1 and 𝑠 = 1, . . . , 𝑡 do
4 𝑊 (𝑖, 𝑠, 𝑡) ← (1 − 𝛾𝑡,𝑠 ) ·𝑊 (𝑖, 𝑠, 𝑡 − 1) + 1[𝑥𝑡 ∉ S] · 𝛾𝑡,𝑠−1 ·𝑊 (𝑖, 𝑠 − 1, 𝑡 − 1);
5 for each 𝑠 = 1, . . . , 𝑡 do
6 𝑊 (𝑡, 𝑠, 𝑡) ← 1[𝑥𝑡 ∈ S] · 𝑝𝑡,𝑠 ·

(∑
𝑖≤𝑡−1

∑𝑚
ℓ=𝑠𝑊 (𝑖, ℓ, 𝑡 − 1) +

∏𝑡−1
𝑖=1 1[𝑥𝑖 ∉ S]

)
;

7 return
∑𝑚
𝑠=1𝑊 (𝑖, 𝑠,𝑚);

<
1
𝑛
· (𝑘 − 1 + 2𝜖) < 1

𝑛
· 𝑘 · (1 − 𝜖)𝑘−1, (as (1 − 𝜖)𝑘−1 > 1 − 1/(2𝑘) and 𝜖 < 1/4)

which is smaller than the expected social welfare under the YES instance. Therefore, the problem of finding a welfare-maximizing strategy
is NP-hard for the algorithm. □

Observation 5. We observe that for a fixed arrangement 𝜋∗, noiselessness is not always optimal in terms of the social welfare. Consider the
following example. The algorithm’s ground-truth is fixed as 𝜋∗ = (𝑥1, 𝑥2, 𝑥3), but items 𝑥1 and 𝑥2 only have positive value to a proportion of 1%
of people.

If the algorithm is noiseless and only presents two items to the humans, it causes 99% of people to get no benefit, which results in worse social
welfare than a noisy algorithm that would randomize over items that are presented.

E.2 Mixed Integer Linear Programming Formulation
Finally, we adapt theMIP of [32] and formulate the problem of finding thewelfare-maximizing strategy as anMIP. [32] studies the assortment
optimization problem under the Mallows model, where each item is associated with a nonnegative value 𝑟𝑖 and the goal is to pick a subset
of items S to maximize the weighted sum of choice probabilities. Formally, the problem can be expressed as follows:

max
S⊆[𝑚]

©­«
∑
𝑥𝑖 ∈S

𝑟𝑖 · P[𝑥𝑖 ≻ S]ª®¬ .

[32] shows the choice probability of 𝑥𝑖 being the first among all items inS can be calculated by a dynamic programming algorithm. However,
it is worth noting that the algorithm relies on prior knowledge that some item is known to be included in S, which is further used as a
“guess” of the MIP formulation. We next provide a dynamic programming of the choice probability with marginal change to the original
algorithm of [32] without any prior knowledge.

Let𝑊 (𝑖, 𝑠, 𝑡) be the probability of item 𝑥𝑖 being chosen at position 𝑠 after 𝑡 steps of repeatedly insertion, where 𝑖 ∈ [𝑚], 𝑠 ∈ [𝑡], and
𝑡 ∈ [𝑚]. The following algorithm assumes the ground-truth ranking 𝜋∗ = (𝑥1, . . . , 𝑥𝑚) without loss of generality. We use the same notations
for constants 𝑝𝑡+1,𝑠 , 𝛾𝑡+1,𝑠 as in [32]. Probability 𝑝𝑡+1,𝑠 is the probability of inserting item 𝑥𝑡+1 at position 𝑠 into a partial permutation of
𝑥1, . . . , 𝑥𝑡 . Also, 𝛾𝑡,𝑠 =

∑𝑠
ℓ=1 𝑝𝑡,ℓ . Both sets of constants have closed-form expressions once the ground-truth ranking and the accuracy

parameter are given.

Lemma 17. Algorithm 7 computes the choice probability of item 𝑥𝑖 being the first among S.

PRoof. Compared to the original dynamic programming of [32], we do not require a precondition that an item 𝑥𝑖 needs to be included in
S. Hence, we update the state space starting from step 𝑡 = 1 rather than 𝑡 = 2. As a result, if 𝑥𝑡 ∈ S, at the 𝑡-th step, there are two possible
cases for item 𝑥𝑡 being selected at position 𝑠: 1) none of items 𝑥1, . . . , 𝑥𝑡−1 is included in S; therefore, item 𝑥𝑡 is selected at position 𝑠 with
probability 𝑝𝑡,𝑠 ; 2) at least one of items 𝑥1, . . . , 𝑥𝑡−1 is included in S; therefore, item 𝑥𝑡 is chosen only if all items of 𝑥1, . . . , 𝑥𝑡−1 that are
included in S are ranked after 𝑥𝑡 and 𝑥𝑡 is inserted at position 𝑠 (the same argument of [32]). Otherwise, if 𝑥𝑡 ∉ S, the same argument of
[32] still applies for updating the probabilities of choosing other items. □

MIP Formulation. Based on the above dynamic programming, we first give a simplified MIP formulation of the assortment problem in
Fig. 9. For notational simplicity, we reuse 𝜎 to denote the ground-truth ranking. Note that, we no longer force 𝜎 to be {𝑥1, . . . , 𝑥𝑚}. Denote
by 𝜎 (𝑖) the index of the 𝑖-th item. It is worth noting, the newMIP does not rely on the guess of knowing some item included in S. Therefore,
it is no longer needed to enumerate all the possible guesses, which further reduces the running time by a factor of 𝑂 (𝑚).

Based on the MIP, we then formulate the problem of finding the welfare-maximizing algorithm as an MIP as follows. We replicate the
constraint of choice probability 𝑛 times – once for each of the 𝑛 Mallows distributions corresponding to the 𝑛 types of humans. Notably, as
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each type of human has a different ground-truth ranking, 𝜎 is set accordingly in each case. In addition, the objective function is changed
accordingly by summing the utilities of all humans.

MIP for the Assortment Problem

max
𝒙,𝑾

𝑚∑
𝑖=1

𝑟𝑖 ·
𝑚∑
𝑠=1

𝑊 (𝑖, 𝑠,𝑚)

subject to 𝑊 (𝑖, 𝑠, 𝑡) = (1 − 𝛾𝑡,𝑠 ) ·𝑊 (𝑖, 𝑠, 𝑡 − 1) + 𝑦𝑖,𝑠,𝑡 ∀𝑖, 𝑠, 𝑡
𝑦𝑖,𝑠,𝑡 ≤ 𝛾𝑡,𝑠−1 ·𝑊 (𝑖, 𝑠 − 1, 𝑡 − 1) ∀𝑗, 𝑠, 𝑡
𝑊 (𝑡, 𝑠, 𝑡) = 𝑧𝑠,𝑡 ∀𝑠, 𝑡

𝑧𝑠,𝑡 ≤ 𝑝𝑡,𝑠 ·
(
𝑡−1∑
𝑖=1

𝑚∑
ℓ=𝑠

𝑊 (𝑖, ℓ, 𝑡 − 1) + 𝑞𝑡−1

)
∀𝑠, 𝑡

0 ≤ 𝑞𝑡 ≤ 1 − 𝑥𝜎 (𝑖 ) ∀𝑖 ≤ 𝑡

𝑞𝑡 ≥ 1 −
𝑡∑
𝑖=1

𝑥𝜎 (𝑖 ) ∀𝑡

0 ≤ 𝑧𝑠,𝑡 ≤ 𝑝𝑡,𝑠 · 𝑥𝜎 (𝑡 ) ∀𝑠, 𝑡
𝑥𝑖 ∈ {0, 1} ∀𝑖
𝑚∑
𝑖=1

𝑥𝑖 ≤ 𝑘

• 𝜎 : the ground-truth ranking of the Mallows model;
• 𝑟𝑖 : the value of item 𝑥𝑖 ;
• 𝜎 (𝑖): the index of the 𝑖-th item in the ground-truth ranking 𝜎 ;
• 𝑥𝑖 : indicator variable of whether item 𝑥𝑖 is included in the assortment S;
• 𝑊 (𝑖, 𝑠, 𝑡): the probability of the 𝑖-th item being chosen at position 𝑠 after 𝑡 steps of repeatedly insertion;
• 𝑝𝑡+1,𝑠 is the probability of inserting item the (𝑡 + 1)-th item at position 𝑠 into a partial permutation of the top 𝑡 items;
• 𝛾𝑡,𝑠 :

∑𝑠
ℓ=1 𝑝𝑡,ℓ .

MIP for the Welfare Maximization Problem

max
𝒙,𝑾 (1) ,...,𝑾 (𝑛)

𝑛∑
𝑖=1

𝑝𝑖 ·
𝑚∑
𝑗=1

𝑣 𝑗 ·
𝑚∑
𝑠=1

𝑊 (𝑖 ) (𝑖, 𝑠,𝑚)

subject to choiceProbConstraint(𝑖, 𝒙,𝑾 (𝑖 ) ) ∀𝑖 ∈ [𝑛]

• choiceProbConstraint(𝑖, 𝒙,𝑾 (𝑖 ) ) refers to the constraint of choice probability between 𝒙 and 𝑾 (𝑖 ) under the 𝑖-th Mallows
distribution.

Figure 9: MIP formulation of the welfare-maximizing strategy.

E.3 Uplift under Special Cases
Lemma 4. Suppose human of type 𝑖 only has positive values for the top 𝑇 items, i.e., 𝑣𝑖, 𝑗 > 0 for 𝑗 ≤ 𝑇 and 𝑣𝑖, 𝑗 = 0 for 𝑗 > 𝑇 . Then if
𝜋∗ ( 𝑗) = 𝜌∗ ( 𝑗) for any 𝑗 ≤ 𝑇 , 𝜙𝑎 = 𝜙ℎ , and 1 < 𝑘 < 𝑚, uplift is achieved.

PRoof. We first show the lemma holds for a special case: 𝜙𝑎 = 𝜙ℎ = 𝜙 . Unfold the expectation of the two sides of the inequality of uplift.
The original inequality is equivalent to the following inequality

𝑚∑
𝑗=1

𝑣 𝑗 · P[𝑥𝐶 = 𝑥 𝑗 ] >
𝑚∑
𝑗=1

𝑣 𝑗 · P[𝑥𝐻 = 𝑥 𝑗 ] . (4)

To show the above inequality, we apply Karamata’s inequality to prove the following proposition, which essentially states that, for any
𝑖 ∈ [𝑇 ], the probability of the joint system picking an item of 𝑥1, . . . , 𝑥𝑖 is weakly larger than the probability of the human acting alone.

Proposition 1. For any 𝑖 ∈ [𝑇 ], we have
∑𝑖

𝑗=1 P[𝑥𝐶 = 𝑥 𝑗 ] >
∑𝑖

𝑗=1 P[𝑥𝐻 = 𝑥 𝑗 ].
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PRoof. According to the law of conditional probability, we can expand the above probability conditioned on the first 𝑘 items of human’s
permutation as follows,

𝑖∑
𝑗=1

P[𝑥𝐻 = 𝑥 𝑗 ] =
𝑖∑
𝑗=1

∑
S: |S |=𝑘

P[𝑥𝐻 = 𝑥 𝑗 | 𝜌 [: 𝑘] = S] · P[𝜌 [: 𝑘] = S]

By Lemma 11, the probability of P[𝜌 [: 𝑘] = S] only depends on 𝜙 and the sum of indices of items of S. As 𝜌∗ an 𝜋∗ have the same set of
top 𝑇 items, we can see P[𝜌 [: 𝑘] = S] = P[𝜋 [: 𝑘] = S] and the above sum can be rewritten as

𝑖∑
𝑗=1

P[𝑥𝐻 = 𝑥 𝑗 ] =
∑

𝑆 : |𝑆 |=𝑘
P[𝜋 [: 𝑘] = 𝑆] ·

𝑖∑
𝑗=1

P[𝑥𝐻 = 𝑥 𝑗 | 𝜌 [: 𝑘] = 𝑆] .

Fix a set 𝑆 of size 𝑘 . Notice that, when 𝑥 𝑗 ∉ 𝑆 , P[𝑥𝐻 = 𝑥 𝑗 | 𝜌 [: 𝑘] = S] = 0. Next, we consider the sum of the conditional probabilities for
𝑥 𝑗 ∈ 𝑆 . We first show that, conditioned on 𝜌 [: 𝑘] = S, the partial ordering of the first 𝑘 items (denoted by 𝜌 |S ) forms a Mallows distribution
of items of S. Observe that the number of inversions between 𝑆 and 𝑀 \ 𝑆 for every permutation 𝜌 such that 𝜌 [: 𝑘] = S since the two sets
of items are isolated. Hence, among all the permutations such that 𝜌 [: 𝑘] = S, the probability of each of them is proportional to exp(−𝜙)
raised to the power of the number of inversions inside S, which implies that the partial ranking 𝜋 |𝑆 forms a Mallows distribution of items
of S. Denote the 𝑠 items by S = {𝑥𝑖 (1) , . . . , 𝑥𝑖 (𝑘 ) } with 𝑖 (1) < . . . < 𝑖 (𝑘). By the known property of Mallows model [10, Lemma 2.5], the
probability of item 𝑥𝑖 ( 𝑗 ) being the first is equal to exp(−𝜙 · ( 𝑗 − 1))/𝑍𝑘 (𝜙). Summing it up for 𝑗 from 1 to 𝑖 , we get the probability of 𝑥𝐻
being one of 𝑥1 to 𝑥𝑖 is equal to 𝑍𝑠 (𝜙)/𝑍𝑘 (𝜙), where 𝑠 is the size of the intersection of {𝑥1, . . . , 𝑥𝑖 } and S. Therefore, the probability of the
human picking one of the first 𝑖 items is equal to

𝑖∑
𝑗=1

P[𝑥𝐻 = 𝑥 𝑗 ] =
∑

𝑆 : |𝑆 |=𝑘
P[𝜋 [: 𝑘] = S] · 𝑍𝑠 (𝜙)

𝑍𝑘 (𝜙)
, with 𝑠 = |𝑆 ∩ {𝑥1, . . . , 𝑥𝑖 }| .

On the other side, by the definition of the pick-and-choose, the joint system picks the human’s favorite item among the presented 𝑘 items
of the algorithm. Hence, we have

𝑖∑
𝑗=1

P[𝑥𝐶 = 𝑥 𝑗 ] =
∑
S: |S |=𝑘

P[𝜋 [: 𝑘] = S] ·
𝑖∑
𝑗=1

P[𝑥 𝑗 ≻𝜌 S] . (5)

In Lemma 16, we show that
∑𝑖

𝑗=1 P[𝑥 𝑗 ≻𝜌 𝑆] ≥ 𝑍𝑠 (𝜙)/𝑍𝑘 (𝜙). It immediately implies that
∑𝑖

𝑗=1 P[𝑥𝐶 = 𝑥 𝑗 ] ≥
∑𝑖

𝑗=1 P[𝑥𝐻 = 𝑥 𝑗 ] and
concludes the proof. □

Using Karamata’s inequality and Proposition 1, we conclude that the theorem holds for the special case. □

E.4 Small Noiseness Helps Uplift
Lemma 5. There exist settings where uplift can occur at lower accuracy (higher noise), but fails at higher accuracy.

PRoof. Suppose there are three types of humans, and an algorithm is presenting 𝑘 = 2 items to the human. The ground-truth rankings
of the three types of humans are respectively 𝜌∗1 = (𝑥1, 𝑥2, · · · , 𝑥𝑚), 𝜌

∗
2 = (𝑥2, 𝑥3, · · · , 𝑥𝑚), and 𝜌∗3 = (𝑥3, 𝑥1, · · · , 𝑥𝑚). Consider the top-item

recovery setting: 𝑣1 = 1 and 𝑣𝑖 = 0 for 𝑖 ≥ 2. The accuracy parameter of the human 𝜙ℎ is assumed to be sufficiently small such that every
human is almost equally likely to pick any item by themselves.

If the algorithm sets the response to be noiseless, then the presented two items will be deterministic, which means only two of {𝑥1, 𝑥2, 𝑥3}
can be presented. As a result, at least one of the three types of humans is unable to pick their best item and receives no utility from the
collaboration.

Nevertheless, oncewe add some noise to the response of the algorithm, uplift becomes possible. Consider setting the ground-truth ranking
of the algorithm as 𝜋∗ = (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑚) and the accuracy 𝜙𝑎 such that P[𝜋 (1) = 𝑥1] = 1/2, P[𝜋 (1) = 𝑥2] = 1/4, and P[𝜋 (3) = 𝑥3] = 1/8.
For every type of human, if her favorite item is included in the presented two items, she has a probability of at least 1/2 to choose it among
the two items.Therefore, the probability of choosing the best item reaches at least 1/8 ·1/2 = 1/16, which beats the value of acting alone. □

E.5 NP-Hardness of Deciding Existence of Uplifting Strategy
Theorem 4. It is NP-hard to determine whether there exists a strategy satisfying uplift (𝜋∗, 𝜙𝑎). Further, it is NP-complete when 𝑘 is given as
a constant (which means whether a given strategy (𝜋∗, 𝜙𝑎) achieves uplift can be verified in polynomial time).

PRoof. We reduce from the Vertex Cover problem. The input of the Vertex Cover problem is a graph instance 𝐺 = (𝑉 , 𝐸) along with a
number 𝑘 . The output is YES if there exists a vertex cover (containing at least one vertex of every edge) of size at most 𝑘 and NO otherwise.
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We construct a human-AI collaboration model as follows. By the properties of the Mallows model, for a fixed accuracy 𝜙ℎ and ground-
truth ranking 𝜌∗, in a Mallows distribution 𝜌 ∼ D(𝜌∗, 𝜙ℎ), we have

P
𝜌∼D(𝜌∗,𝜙ℎ )

[𝜌 (1) ∈ {𝜌∗ (1), 𝜌∗ (2)}] = 𝑍2 (𝜙ℎ)
𝑍𝑚 (𝜙ℎ)

>
𝑍2 (𝜙ℎ)

1/(1 − exp(−𝜙)) ,

P
𝜌∼D(𝜌∗,𝜙ℎ )

[𝜌 (1) ∈ {𝜌∗ (1), 𝜌∗ (2)}] = 𝑍2 (𝜙ℎ)
𝑍𝑚 (𝜙ℎ)

<
𝑍2 (𝜙ℎ)

1 + exp(−𝜙ℎ) + exp(−𝜙ℎ · 2)
.

Then set 𝜖1 as a sufficiently small constants such that 1 − 𝜖1/𝑘1 > 2𝜖1/(2𝑘 )1 and 𝜖1 < 1/4, and the accuracy parameter 𝜙ℎ such that 1 − 𝜖1 <
1 − exp(−𝜙ℎ · 2). Let 𝜖2 be defined as follows

𝜖2 = 1 − 1 + exp(−𝜙ℎ)
1 + exp(−𝜙ℎ) + exp(−𝜙ℎ · 2)

.

Further, set 𝜖3 be a sufficiently small constant such that (1 − 𝜖3)𝑛 ≥ 1 − 𝜖2. Then we fix 𝜙ℎ and apply Lemma 14 to find 𝐵 such that the
probability of pairwise comparison is no less than 1 − 𝜖3 once the index difference is no less than 𝐵, and also set 𝐵 larger than 𝑛.

Construct 𝑛 + 𝐵 items in total: 𝑛 vertex items 𝑥𝑣 for any vertex 𝑣 ∈ 𝑉 and 𝐵 dummy items 𝑦𝑖 for 𝑖 ∈ [𝐵]. Also, we create one type of
human for every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 with ground-truth ranking

𝜌∗𝑒 = (𝑥𝑢 , 𝑥𝑣, 𝑦1, · · · , 𝑦𝐵, · · · ), for any (𝑢, 𝑣) ∈ 𝐸
which places items 𝑥𝑢 and 𝑥𝑣 first, followed immediately by all the dummy items, and finally the remaining vertex items. Each human only
has positive values for the first two items 𝑣1 = 𝑣2 = 1 while 𝑣 𝑗 = 0 for 𝑗 > 2.

We next prove the mapping between the two instances. When the input vertex cover is a YES instance, there exists a vertex cover𝑈 ⊆ 𝑉
that covers every edge. Consider the strategy that puts 𝑈 first in 𝜋∗ and set 𝜙𝑎 = +∞. For every human with ground-truth ranking 𝜌∗𝑒 , if
both 𝑥𝑢 and 𝑥𝑣 are included in𝑈 , then the probability of choosing either 𝑥𝑢 or 𝑥𝑣 strictly increases. Otherwise, if only 𝑥𝑢 or 𝑥𝑣 is included
in 𝑈 , as all other vertex items in 𝑈 are placed to the end of 𝜌∗𝑒 , the probability of pairwise comparison is at least 1 − 𝜖2. By the setting of
𝜖3, the probability of ranking 𝑥𝑢 or 𝑥𝑣 before other items in 𝑈 is at least (1 − 𝜖3)𝑛 ≥ 1 − 𝜖2. Thus, the human still has a higher probability
of choosing her favorite item and receives a higher expected utility. Hence, (𝜋∗, +∞) achieves uplift and the human-AI model is also a YES
instance.

We next consider when the input graph is a NO instance of the vertex cover problem. We prove it by contradiction. Suppose an uplift
strategy exists. We first claim that the algorithm should be “very random”. Consider the probability of the algorithm presenting the first 𝑘
items of its ground-truth ranking. By Lemma 11, the probability of that event is greater than 1/Π𝑘

𝑖=1𝑍𝑚 (𝜙𝑎). As the input instance is NO
instance, there must exist an agent whose top two items are not included in the first 𝑘 items of 𝜋∗. As a result, one human receives a utility
of zero in this case. Since the utility of the human is at least 1 − 𝜖1 when acting alone, then

(1 − exp(−𝜙𝑎))𝑘 <
1

Π𝑘
𝑖=1𝑍𝑚 (𝜙𝑎)

< 𝜖1 =⇒ exp(−𝜙𝑎) > 1 − 𝜖1/𝑘1 .

On the other hand, we prove that, to make sure the algorithm uplifts every human, the algorithm should also be “very robust” since it
should make sure at least one of the favorite items of every human included in S with a high probability. By Lemma 9, the probability of
an item ranked in the first 𝑘 positions reaches maximum when the item is the first one in the ground-truth ranking. Hence, the maximum
probability is 𝑍𝑘 (𝜙𝑎)/𝑍𝑛+𝐵 (𝜙𝑎). Therefore,

1 − 𝜖1 < P[S ∩ {𝑥𝑢 , 𝑥𝑣} ≠ ∅] ≤ 1 − P[S ∩ {𝑥𝑢 } = ∅] · P[S ∩ {𝑥𝑣} = ∅]

< 1 −
(
1 − 𝑍𝑘 (𝜙𝑎)

𝑍𝑛+𝐵 (𝜙𝑎)

)2
< 1 −

(
1 − 1

1 + exp(−𝜙𝑎)𝑘

)2
. (as 𝐵 > 𝑛)

Direct calculation implies that

1 − 1

1 + exp(−𝜙𝑎)𝑘
<
√
𝜖1 =⇒ exp(−𝜙𝑎)𝑘 <

√
𝜖1

1 − √𝜖1
=⇒ exp(−𝜙𝑎) <

𝜖
1/(2𝑘 )
1

(1 − √𝜖1)1/𝑘
< 2𝜖1/(2𝑘 )1 ,

which contradicts the previous inequality exp(−𝜙𝑎) > 1 − 𝜖1/𝑘1 . Therefore, the human-AI model is also a NO-instance and it concludes the
reduction.

NP-membership. Next, we provide a polynomial-time method to validate whether an algorithmwith a fixed ground-truth ranking 𝜋∗ and
accuracy parameter 𝜙𝑎 achieves uplift and complementarity when the number of presented items 𝑘 is constant-bounded. By the definition
of the pick-and-choose, a human picks a particular item 𝑥𝑖 only if the algorithm includes it in S and the human ranks it before other items
of S. Notice that the number of possible outcomes of S is equal to 𝑛𝑘 .

For every set ofS with𝑘 items, as shown in Appendix C.2.1, there is a closed-form expression of the probability ofS being the first𝑘 items
of 𝜋 , which can be computed in𝑂 (𝑚) time. Moreover, Algorithm 7 can calculate the probability of an item 𝑥𝑖 being first among a shortlist of
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items S in the Mallows model. Combining them, we can identify the exact utility of every human receiving from the collaboration, which
further determines whether uplift is achieved or not. □

Corollary 1. The problem of finding the welfare-maximizing strategy remains NP-hard under the top item recovery setting.

Lemma 6. In the top item recovery setting, when the ground-truth rankings of humans satisfy |M0 | ≤ 𝑚−1whereM0 is the set of distinct items
that some human has positive value for, then always presentingM0 to the human achieves uplift and also maximizes the expected utilitarian
social welfare among all the noiseless algorithms that achieve uplift.

PRoof. Uplift stems from the algorithm aiding people in eliminating valueless items. When a human acts alone, she must choose her
most valuable item (the “superstar”) from the entire item set. As every valuable item remains included inM0, each human can choose her
favorite item among a shorter list, which leads to a higher probability than acting alone. Meanwhile, to maximize the maximin share, the
algorithm should include every item ofM0 in the presented item list S. Otherwise, there must exist one type of human with no chance to
pick her best item, and the minimum utility will be equal to 0, which is smaller than always presentingM0. Furthermore, for every item
that is not favored by any human, erasing it from S only improves the probability of every human picking her best item, as it causes less
misleading. Thus, the strategy also maximizes the expected utilitarian social welfare among all noiseless strategies. □

F TABLE OF SECTION 6
Expanding on the numerical study presented in Section 6, the following table lists the most common sushi preference rankings among the
120 observed rankings. Each row reports a specific ranking, the number of participants (out of 5000) who expressed that preference, and
the cumulative fraction of the total population accounted for up to that row. Notably, the top 33 most frequent rankings together represent
the preferences of half of the participants.
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Table 3: Population distribution and cumulative fractions for sushi rankings.

Population Ranking Cumulative Fraction of Total Population
126 [4, 5, 2, 1, 3] 0.0252
120 [4, 5, 1, 2, 3] 0.0492
119 [4, 5, 2, 3, 1] 0.0730
119 [2, 1, 3, 5, 4] 0.0968
119 [2, 3, 1, 5, 4] 0.1206
115 [1, 2, 3, 5, 4] 0.1436
94 [5, 2, 3, 1, 4] 0.1624
81 [5, 4, 1, 2, 3] 0.1786
78 [1, 4, 5, 2, 3] 0.1942
77 [4, 1, 5, 2, 3] 0.2096
75 [2, 3, 1, 4, 5] 0.2246
74 [4, 2, 5, 3, 1] 0.2394
73 [3, 2, 1, 5, 4] 0.2540
71 [5, 2, 1, 3, 4] 0.2682
70 [5, 4, 2, 1, 3] 0.2822
67 [2, 5, 3, 1, 4] 0.2956
66 [2, 5, 1, 3, 4] 0.3088
66 [1, 2, 3, 4, 5] 0.3220
65 [5, 4, 2, 3, 1] 0.3350
64 [2, 5, 4, 3, 1] 0.3478
64 [4, 5, 1, 3, 2] 0.3606
64 [2, 3, 5, 1, 4] 0.3734
63 [4, 5, 3, 2, 1] 0.3860
63 [5, 2, 3, 4, 1] 0.3986
62 [2, 1, 3, 4, 5] 0.4110
60 [5, 1, 2, 3, 4] 0.4230
59 [4, 1, 5, 3, 2] 0.4348
56 [1, 3, 2, 5, 4] 0.4460
56 [1, 2, 4, 5, 3] 0.4572
55 [4, 2, 5, 1, 3] 0.4682
54 [2, 1, 5, 4, 3] 0.4790
54 [4, 1, 2, 5, 3] 0.4898
54 [3, 1, 2, 5, 4] 0.5006
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